0
点赞
收藏
分享

微信扫一扫

RabbitMQ高级特性

Sky飞羽 2021-09-19 阅读 52

0. 前言

本文内容分为如下三部分
RabbitMQ高级特性

RabbitMQ应用问题

1. 高级特性

1.1 消息的可靠投递

在使用 RabbitMQ 的时候,作为消息发送方希望杜绝任何消息丢失或者投递失败场景。RabbitMQ 为我们提供了两种方式用来控制消息的投递可靠性模式。
confirm 确认模式
return 退回模式

rabbitmq 整个消息投递的路径为:
producer--->rabbitmq broker--->exchange--->queue--->consumer
消息从 producer 到 exchange 则会返回一个 confirmCallback
消息从 exchange-->queue 投递失败则会返回一个 returnCallback
我们将利用这两个 callback 控制消息的可靠性投递

confirm模式

在上一篇中的最后我们用spring-boot配置了rabbitMQ,
在这里在原来的基础上继续进行,在生产者的application.yml添加

使用rabbitTemplate.setConfirmCallback设置回调函数。当消息发送到exchange后回调confirm方法。在方法中判断ack,如果为true,则发送成功,如果为false,则发送失败,需要处理
#配置RabbitMQ的基本信息 ip 端口 username password
spring:
  rabbitmq:
    host: xxx
    port: 5672
    username: root
    password: root
    virtual-host: /example
    #生产端配置
    #开启发送确认,此配置在Springboot2.3.0版本中已经@Deprecated了,默认就是
    # publisher-confirms: true
    #
    publisher-confirm-type: simple
    #开启发送失败退回
    publisher-returns: true

然后新增一个test

@Test
    public void testConfirm() {
        // 1. 设置ConnectionFactory的publisher-confirms="true" 开启 确认模式。

        // 2. 使用rabbitTemplate.setConfirmCallback设置回调函数。
        //      当消息发送到exchange后回调confirm方法。
        //      在方法中判断ack,如果为true,则发送成功,如果为false,则发送失败,需要处理。
        rabbitTemplate.setConfirmCallback(new RabbitTemplate.ConfirmCallback() {
            /**
             *
             * @param correlationData 相关配置信息
             * @param ack   exchange交换机 是否成功收到了消息。true 成功,false代表失败
             * @param cause 失败原因
             */
            @Override
            public void confirm(CorrelationData correlationData, boolean ack, String cause) {
                System.out.println("confirm方法被执行了");
                if (ack) {
                    //接收成功
                    System.out.println("接收成功消息" + cause);
                } else {
                    //接收失败
                    System.out.println("接收失败消息" + cause);
                    //做一些处理,让消息再次发送。
                }
            }
        });
        // 3. 发生消息
        rabbitTemplate.convertAndSend(RabbitMQConfig.EXCHANGE_NAME, "boot.confirm", "confirm mq hello~~~~~~~~");

    }

启动测试,结束后控制台成功打印

登陆rabbitmq管理后台也可以看到消息已经写入队列中了,只是还没有被消费。
其中回调函数中 confirm的第一个参数correlationData会在发送消息的函数convertAndSend的重载函数中会使用,这里没有使用这个参数。
ack比较重要,可以判断交换机是否收到消息
cause失败原因

return模式

使用rabbitTemplate.setReturnCallback设置退回函数,当消息从exchange路由到queue失败后,如果设置了rabbitTemplate.setMandatory(true)参数,则会将消息退回给producer。并执行回调函数returnedMessage。

application.yml添加

#配置RabbitMQ的基本信息 ip 端口 username password
spring:
  rabbitmq:
    host: asjunor.site
    port: 5672
    username: root
    password: root
    virtual-host: /example
    #生产端配置
    #开启发送确认,此配置在Springboot2.3.0版本中已经@Deprecated了,默认就是
    # publisher-confirms: true
    #
    publisher-confirm-type: simple
    #开启发送失败退回
    publisher-returns: true
    #开启执行return回调
    template:
      mandatory: true

编写测试

 /**
     * 回退模式: 当消息发送给Exchange后,Exchange路由到Queue失败时候才会执行 ReturnCallBack
     * 步骤:
     * 1. 开启回退模式:publisher-returns="true"
     * 2. 设置ReturnCallBack
     * 3. 设置Exchange处理消息的模式:
     *      1. 如果消息没有路由到Queue,则丢弃消息(默认)
     *      2. 如果消息没有路由到Queue,返回给消息发送方ReturnCallBack
     */
    @Test
    public void testReturn(){
        // 设置交换机处理失败消息的模式
        // rabbitTemplate.setMandatory(true);
        // 2.设置ReturnCallBack
        rabbitTemplate.setReturnCallback(new RabbitTemplate.ReturnCallback() {
            /**
             *
             * @param message   消息对象
             * @param replyCode 错误码
             * @param replyText 错误信息
             * @param exchange  交换机
             * @param routingKey 路由键
             */
            @Override
            public void returnedMessage(Message message, int replyCode, String replyText, String exchange, String routingKey) {
                System.out.println("return 被执行了");
                System.out.println(message);
                System.out.println(replyCode);
                System.out.println(replyText);
                System.out.println(exchange);
                System.out.println(routingKey);
            }
        });
        // 3. 发送消息
        rabbitTemplate.convertAndSend(RabbitMQConfig.EXCHANGE_NAME, "boott.treturn", "return mq hello~~~~~~~~");

    }

控制台打印

不知道因为什么原因,return回调经常会不打印信息,有待研究

在RabbitMQ中也提供了事务机制,但是性能较差,此处不做讲解。
使用channel下列方法,完成事务控制:
txSelect(), 用于将当前channel设置成transaction模式
txCommit(),用于提交事务
txRollback(),用于回滚事务

1.2 Consumer Ack

ack指Acknowledge,确认。 表示消费端收到消息后的确认方式。
有三种确认方式:

  • 自动确认:acknowledge="none"
  • 手动确认:acknowledge="manual"
  • 根据异常情况确认:acknowledge="auto",(这种方式使用麻烦,不作讲解)

其中自动确认是指,当消息一旦被Consumer接收到,则自动确认收到,并将相应 message 从 RabbitMQ 的消息缓存中移除。但是在实际业务处理中,很可能消息接收到,业务处理出现异常,那么该消息就会丢失。如果设置了手动确认方式,则需要在业务处理成功后,调用channel.basicAck(),手动签收,如果出现异常,则调用channel.basicNack()方法,让其自动重新发送消息。

配置consumer的监听器

对于消费者,配置application.yml为

#配置RabbitMQ的基本信息 ip 端口 username password
spring:
  rabbitmq:
    host: asjunor.site
    port: 5672
    username: root
    password: root
    virtual-host: /example
    listener:
      direct:
        acknowledge-mode: manual
      simple:
        acknowledge-mode: manual

我们在原来RabbitMQListener上修改
新建一个监听器ackListener

@Component
@RabbitListener(queues = "boot_queue")
public class AckListener  {
    @RabbitHandler
    public void process(String hello,Channel channel, Message message) throws IOException, InterruptedException {
        Thread.sleep(1000);
        long deliveryTag = message.getMessageProperties().getDeliveryTag();
        try {
            // 1. 接受转换消息
            System.out.println("ackListener收到的消息为:" + new String(message.getBody()));

            // 2. 处理业务逻辑
            System.out.println("处理业务逻辑");
            int i =3/0;
            // 3. 手动签收
            channel.basicAck(deliveryTag,true);
        }
        catch (Exception e){
            // 4. 拒绝签收
            /*
            第三个参数:requeue:重回队列。如果设置为true,则消息重新回到queue,broker会重新发送该消息给消费端
             */
            channel.basicNack(deliveryTag,true,true);
//            channel.basicReject(deliveryTag,true); 单条数据
           
        }
            //消息的标识,false只确认当前一个消息收到,true确认所有consumer获得的消息
            //channel.basicAck(message.getMessageProperties().getDeliveryTag(), false);
            //ack返回false,并重新回到队列,api里面解释得很清楚
            //channel.basicNack(message.getMessageProperties().getDeliveryTag(), false, true);
            //拒绝消息
            //channel.basicReject(message.getMessageProperties().getDeliveryTag(), true);

    }
}

@RabbitListener 可以标注在类上面,需配合 @RabbitHandler 注解一起使用
@RabbitListener 标注在类上面表示当有收到消息的时候,就交给 @RabbitHandler 的方法处理,具体使用哪个方法处理,根据 MessageConverter 转换后的参数类型

设置acknowledge属性,设置ack方式 none:自动确认,manual:手动确认

如果在消费端没有出现异常,则调用channel.basicAck(deliveryTag,false);方法确认签收消息,签收成功,消息就被消费了。

如果出现异常,则在catch中调用 basicNack或 basicReject,拒绝消息,让MQ重新发送消息。

消息可靠性小结

  1. 持久化
    • exchange要持久化
    • queue要持久化
    • message要持久化
  2. 生产方确认Confirm
  3. 消费方确认Ack
  4. Broker高可用,后面集群会讲到

1.3 消费端限流

回顾一下这个图,我们说过MQ有个很重要的作用就是削峰填谷

接下来就学习如何实现限流
新建一个QosListener,这时候要把之前的AckListener注释掉,
修改application.yml

#配置RabbitMQ的基本信息 ip 端口 username password
spring:
  rabbitmq:
    host: asjunor.site
    port: 5672
    username: root
    password: root
    virtual-host: /example
    listener:
      direct:
        acknowledge-mode: manual
        #每次限流1条消息
        prefetch: 1
      simple:
        acknowledge-mode: manual
        prefetch: 1

其中新增了perfetch = 1,表示消费端每次从mq拉去一条消息来消费,直到手动确认消费完毕后,才会继续拉去下一条消息。

/**
 * Consumer 限流机制
 * 1. 确保ack机制为手动确认。
 * 2. listener-container配置属性
 * perfetch = 1,表示消费端每次从mq拉去一条消息来消费,直到手动确认消费完毕后,才会继续拉去下一条消息。
 */
@Component
@RabbitListener(queues = "boot_queue")
public class QosListener {
    @RabbitHandler
    public void process(String hello, Channel channel, Message message) throws IOException, InterruptedException {
        Thread.sleep(1000);
        //1.获取消息
        System.out.println("Qos:"+new String(message.getBody()));

        //2. 处理业务逻辑

        //3. 签收
//        channel.basicAck(message.getMessageProperties().getDeliveryTag(), true);
    }
}

在这里我们把最后一行 channel.basicAck(message.getMessageProperties().getDeliveryTag(), true);注释掉
启动消费者
发现只打印了一次

小结

配置 prefetch属性设置消费端一次拉取多少消息

消费端的确认模式一定为手动确认。acknowledge="manual"

1.4 TTL

TTL 全称 Time To Live(存活时间/过期时间)。

当消息到达存活时间后,还没有被消费,会被自动清除。

RabbitMQ可以对消息设置过期时间,也可以对整个队列(Queue)设置过期时间。
比如我们有个订单系统,下订单时候如果30分钟内未被支付,那么这条消息就失效了。


控制台测试

打开我们的控制台,新建队列的时候可以看到最下面的arguments,我们先设置一个message ttl为10秒

再创建一个交换机

将交换机和队列绑定

再在这个页面下面手动发消息

十秒钟这个消息就会消失

编写代码测试

删除在控制台创建的交换机和对垒
producer端新增一个TTLConfig

@Configuration
public class TTLConfig {

    public static final String EXCHANGE_NAME = "test_exchange_ttl";
    public static final String QUEUE_NAME = "test_queue_ttl";

    //1.交换机
    @Bean("ttlExchange")
    public Exchange ttlExchange(){
        return ExchangeBuilder.topicExchange(EXCHANGE_NAME).durable(true).build();
    }


    //2.Queue 队列
    @Bean("ttlQueue")
    public Queue ttlQueue(){
        return QueueBuilder.durable(QUEUE_NAME).ttl(20000).build();
    }

    //3. 队列和交互机绑定关系 Binding
    /*
        1. 知道哪个队列
        2. 知道哪个交换机
        3. routing key
     */
    @Bean
    public Binding bindTTLQueueExchange(@Qualifier("ttlQueue") Queue queue, @Qualifier("ttlExchange") Exchange exchange){
        return BindingBuilder.bind(queue).to(exchange).with("ttl.#").noargs();
    }

}

之后运行测试文件就能创建exchange和queue,其中创建队列时候设置了参数ttl为20秒,指队列的过期时间。
再编写测试函数

/**
     * TTL:过期时间
     *  1. 队列统一过期
     *
     *  2. 消息单独过期
     *
     *
     * 如果设置了消息的过期时间,也设置了队列的过期时间,它以时间短的为准。
     * 队列过期后,会将队列所有消息全部移除。
     * 消息过期后,只有消息在队列顶端,才会判断其是否过期(移除掉)
     *
     */
    @Test
    public void testTTL() {
        // 消息后处理对象,设置一些消息的参数信息
        MessagePostProcessor messagePostProcessor = new MessagePostProcessor(){

            /**
             * Change (or replace) the message.
             *
             * @param message the message.
             * @return the message.
             * @throws AmqpException an exception.
             */
            @Override
            public Message postProcessMessage(Message message) throws AmqpException {
                //1.设置message的信息
                message.getMessageProperties().setExpiration("10000");//消息的过期时间
                //2.返回该消息
                return message;
            }
        };


     
        //消息单独过期
        //rabbitTemplate.convertAndSend("test_exchange_ttl", "ttl.hehe", "message ttl....",messagePostProcessor);


        for (int i = 0; i < 10; i++) {
            if(i == 5){
                //消息单独过期
                rabbitTemplate.convertAndSend("test_exchange_ttl", "ttl.hehe", "message ttl....",messagePostProcessor);
            }else{
                //不过期的消息
                rabbitTemplate.convertAndSend("test_exchange_ttl", "ttl.hehe", "message ttl....");

            }

        }
    }

在这里,其实消息不会看到它过期了,因为5不是在队列的头部,只有在队列头部的才会被移除掉。

小结

设置队列过期时间使用参数:x-message-ttl,单位:ms(毫秒),会对整个队列消息统一过期。

设置消息过期时间使用参数:expiration。单位:ms(毫秒),当该消息在队列头部时(消费时),会单独判断这一消息是否过期。

如果两者都进行了设置,以时间短的为准。

1.5 死信队列

死信队列,英文缩写:DLX 。Dead Letter Exchange(死信交换机),当消息成为Dead message后,可以被重新发送到另一个交换机,这个交换机就是DLX。

在前面的ttl例子中,当我们的消息过期后,会被丢弃,但如果这个队列绑定了死信交换机,则消息不会被丢弃,而是发送到死信交换机,而死信交换机又可以绑定其他队列,从而可以重新被消费者消费。

考虑两个问题:

  • 第一个队列如何绑定死信交换机?
  • 消息什么时候成为死信

消息成为死信的三种情况

  1. 队列消息长度到达限制;

  2. 消费者拒接消费消息,basicNack/basicReject,并且不把消息重新放入原目标队列,requeue=false;

  3. 原队列存在消息过期设置,消息到达超时时间未被消费;

  1. 声明正常的队列(redirect_queue)和交换机(redirect_exchange)
  2. 声明死信队列(dlx_queue)和死信交换机(dlx_exchange)
  3. 正常队列绑定死信交换机
    设置两个参数:
    • x-dead-letter-exchange:死信交换机名称
    • x-dead-letter-routing-key:发送给死信交换机的routingkey

修改application.yml

#配置RabbitMQ的基本信息 ip 端口 username password
spring:
  rabbitmq:
    host: asjunor.site
    port: 5672
    username: root
    password: root
    virtual-host: /example
    #生产端配置
    #开启发送确认,此配置在Springboot2.3.0版本中已经@Deprecated了,默认就是
    # publisher-confirms: true
    #
    publisher-confirm-type: simple
    #开启发送失败退回
    publisher-returns: true
    #开启执行return回调
    template:
      mandatory: true
      retry:
        # 允许消息消费失败的重试
        enabled: true
        # 消息最多消费次数3次
        max-attempts: 3
        # 消息多次消费的间隔1秒
        initial-interval: 1000
    listener:
      direct:
        #  设置为false,会丢弃消息或者重新发布到死信队列
        default-requeue-rejected: false

编写DeadLetterConfig

package org.example.rabbitmq.config;

import org.springframework.amqp.core.*;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.HashMap;
import java.util.Map;

/**
 * @ClassName DeadLetterConfig
 * @Description TODO
 * @Author Patrick Star
 * @Date 2020/12/7 9:37 下午
 */
@Configuration
public class DeadLetterConfig {
    public static final String DL_EXCHANGE = "dl_exchange";

    public static final String DL_QUEUE = "dl_queue";
    public static final String REDIRECT_QUEUE = "redirect_queue";
    public static final String REDIRECT_EXCHANGE = "redirect_exchange";
    public static final String DL_REDIRECT_ROUTING_KEY = "dlx.hehe";


    /**
     * 死信队列跟交换机类型没有关系 不一定为directExchange  不影响该类型交换机的特性.
     */
    @Bean("dlExchange")
    public Exchange deadLetterExchange() {
        return ExchangeBuilder.topicExchange(DL_EXCHANGE).durable(true).build();
    }

    @Bean("dlQueue")
    public Queue deadLetterQueue() {
        // 设置正常队列的长度限制和ttl
        return QueueBuilder.durable(DL_QUEUE).build();
    }

    @Bean("redirectQueue")
    public Queue redirectQueue() {
        Map<String, Object> args = new HashMap<>(2);
//       x-dead-letter-exchange    声明  死信队列Exchange
        args.put("x-dead-letter-exchange", DL_EXCHANGE);
//       x-dead-letter-routing-key    声明 死信队列抛出异常重定向队列的routingKey("dlx.hehe")
        args.put("x-dead-letter-routing-key", DL_REDIRECT_ROUTING_KEY);
        args.put("x-message-ttl", 10000);
        args.put("x-max-length", 10);
        return QueueBuilder.durable(REDIRECT_QUEUE).withArguments(args).build();
    }

    //1.交换机
    @Bean("redirectExchange")
    public Exchange redirectExchange() {
        return ExchangeBuilder.topicExchange(REDIRECT_EXCHANGE).durable(true).build();
    }


    /**
     * 死信队列绑定到死信交换器上.
     *
     * @return the binding
     */
    @Bean
    public Binding dlxBinding(Queue dlQueue, Exchange dlExchange) {
        return BindingBuilder
                .bind(dlQueue)
                .to(dlExchange)
                .with("dlx.#")
                .noargs();

    }

    /**
     * 将重定向队列通过routingKey(“dlx.hehe”)绑定到死信队列的Exchange上
     *
     * @return the binding
     */
    @Bean
    public Binding redirectToDLBinding(@Qualifier("redirectQueue") Queue queue, @Qualifier("dlExchange") Exchange exchange) {
        return BindingBuilder
                .bind(queue)
                .to(exchange)
                .with(DL_REDIRECT_ROUTING_KEY)
                .noargs();

    }

    /**
     * 绑定正常的交换机和队列
     *
     * @return the binding
     */
    @Bean
    public Binding redirectBinding() {
        return BindingBuilder
                .bind(redirectQueue())
                .to(redirectExchange())
                .with("test.dlx.#")
                .noargs();

    }
}


其中分别使用了几种方法来绑定队列,在Binding函数中

  1. 我们可以直接写队列的函数和交换机的函数,如最后一个
  2. 我们可以用@Qualifier注解指定队列和交换机,如倒数第二个
  3. 我们可以在传递参数时,将参数名字和定义的队列和交换机匹配

对消息产生死信的三种情况进行测试

  /**
     * 发送测试死信消息:
     *  1. 过期时间
     *  2. 长度限制
     *  3. 消息拒收
     */
    @Test
    public void testDlx(){
        //1. 测试过期时间,死信消息
        rabbitTemplate.convertAndSend(DeadLetterConfig.REDIRECT_EXCHANGE,"test.dlx.hehe","我是一条消息,我会死吗?");

        //2. 测试长度限制后,消息死信
       /* for (int i = 0; i < 20; i++) {
            rabbitTemplate.convertAndSend(DeadLetterConfig.REDIRECT_EXCHANGE,"test.dlx.haha","我是一条消息,我会死吗?");
        }*/

        //3. 测试消息拒收
//        rabbitTemplate.convertAndSend(DeadLetterConfig.REDIRECT_EXCHANGE,"test.dlx.haha","我是一条消息,我会死吗?");

    }

对第一种情况,消息过期后会自动转到死信队列
对第二种情况,消息长度超过了限制,超过的会自动转到死信队列
对第三种情况,我们要编写一个消费者来监听正常的队列,让消息拒绝接收

新建一个DlxListener,注意,这里是监听我们的正常队列,而不是死信队列

@Component
@RabbitListener(queues = "redirect_queue")
public class DlxListener {
    @RabbitHandler
    public void process(String hello, Channel channel, Message message) throws IOException, InterruptedException {
        Thread.sleep(1000);
        long deliveryTag = message.getMessageProperties().getDeliveryTag();
        try {
            // 1. 接受转换消息
            System.out.println("DlxListener收到的消息为:" + new String(message.getBody()));

            // 2. 处理业务逻辑
            System.out.println("处理业务逻辑");
            int i = 3 / 0;
            // 3. 手动签收
            channel.basicAck(deliveryTag, true);
        } catch (Exception e) {

            /*
            第三个参数:requeue:重回队列。如果设置为true,则消息重新回到queue,broker会重新发送该消息给消费端
             */
            System.out.println("出现异常,拒绝接收");

            // 4. 拒绝签收,不重回队列 requeue = false
            channel.basicNack(deliveryTag, true, false);
//            channel.basicReject(deliveryTag,true); 单条数据

            //消息的标识,false只确认当前一个消息收到,true确认所有consumer获得的消息
            //channel.basicAck(message.getMessageProperties().getDeliveryTag(), false);
            //ack返回false,并重新回到队列,api里面解释得很清楚
            //channel.basicNack(message.getMessageProperties().getDeliveryTag(), false, true);
            //拒绝消息
            //channel.basicReject(message.getMessageProperties().getDeliveryTag(), true);
        }


    }


}

之后运行Consumer,将test的第三个注释打开,进行测试,控制台打印


小结

  1. 死信交换机和死信队列和普通的没有区别

  2. 当消息成为死信后,如果该队列绑定了死信交换机,则消息会被死信交换机重新路由到死信队列

  3. 消息成为死信的三种情况:

    1. 队列消息长度到达限制;
    2. 消费者拒接消费消息,并且不重回队列;
    3. 原队列存在消息过期设置,消息到达超时时间未被消费;

1.6 延迟队列

延迟队列,即消息进入队列后不会立即被消费,只有到达指定时间后,才会被消费。

应用场景有:
比如用户下单后,30分钟未支付,取消订单,回滚库存。再比如新用户注册成功7天后,发送短信问候。

实现方式:
1. 定时器
2. 延迟队列

但是很可惜,在RabbitMQ中并未提供延迟队列功能。

但是可以使用:TTL+死信队列 组合实现延迟队列的效果

如何实现呢,加入我们给订单设定30分钟的支付时间,订单系统一开始将消息发送到正常队列,30分钟后转发到死信队列,有一个专门的库存系统保存去获取这条消息,来判断订单是支付了还是未支付。

具体步骤

  1. 定义正常的交换机( order_exchange )和队列( order_queue )
  2. 定义死信交换机及和队列
  3. 绑定设置正常队列过期时间为10秒钟,测试的时候30分钟太久了

新建一个OrderCondig,我们直接复制并修改之前的死信队列和死信交换机,将order_queue过期时间设置为30分钟,将正常交换机到DLX的routing key改为order.dlx.cancel,将DLX和死信队列的routing key改为order.dlx.#,正常交换机和正常队列的routing key 就为order.#

package org.example.rabbitmq.config;

import org.springframework.amqp.core.*;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.HashMap;
import java.util.Map;

/**
 * @ClassName DeadLetterConfig
 * @Description TODO
 * @Author Patrick Star
 * @Date 2020/12/7 9:37 下午
 */
@Configuration
public class OrderConfig {
    public static final String ORDER_DL_EXCHANGE = "order_dl_exchange";

    public static final String ORDER_DL_QUEUE = "order_dl_queue";
    public static final String ORDER_QUEUE = "order_queue";
    public static final String ORDER_EXCHANGE = "order_exchange";
    public static final String ORDER_DL_ORDER_ROUTING_KEY = "order.dlx.cancel";
    public static final String ORDER_ROUTING_KEY = "order.#";
    public static final String DLX_ROUTING_KEY = "order.dlx.#";

    /**
     * 死信队列跟交换机类型没有关系 不一定为directExchange  不影响该类型交换机的特性.
     */
    @Bean("orderDLExchange")
    public Exchange deadLetterExchange() {
        return ExchangeBuilder.topicExchange(ORDER_DL_EXCHANGE).durable(true).build();
    }

    @Bean("orderDLQueue")
    public Queue deadLetterQueue() {
        return QueueBuilder.durable(ORDER_DL_QUEUE).build();
    }
    // order 队列
    @Bean("orderQueue")
    public Queue orderQueue() {
        Map<String, Object> args = new HashMap<>(2);
                // x-dead-letter-exchange    声明  死信队列Exchange
        args.put("x-dead-letter-exchange", ORDER_DL_EXCHANGE);
                // x-dead-letter-routing-key    声明 死信队列抛出异常重定向队列的routingKey("order.dlx.cancel")
        args.put("x-dead-letter-routing-key", ORDER_DL_ORDER_ROUTING_KEY);
        args.put("x-message-ttl", 10000);
        args.put("x-max-length", 30);
        return QueueBuilder.durable(ORDER_QUEUE).withArguments(args).build();
    }

    // order交换机
    @Bean("orderExchange")
    public Exchange orderExchange() {
        return ExchangeBuilder.topicExchange(ORDER_EXCHANGE).durable(true).build();
    }


    /**
     * 死信队列绑定到死信交换器上.
     *
     * @return the binding
     */
    @Bean
    public Binding newDLBinding(Queue orderDLQueue, Exchange orderDLExchange) {
        return BindingBuilder
                .bind(orderDLQueue)
                .to(orderDLExchange)
                .with(DLX_ROUTING_KEY)
                .noargs();

    }

    /**
     * 将重定向队列通过routingKey(“order.dlx.cancel”)绑定到死信队列的Exchange上
     *
     * @return the binding
     */
    @Bean
    public Binding orderToDLBinding(@Qualifier("orderQueue") Queue queue, @Qualifier("orderDLExchange") Exchange exchange) {
        return BindingBuilder
                .bind(queue)
                .to(exchange)
                .with(ORDER_DL_ORDER_ROUTING_KEY)
                .noargs();

    }

    /**
     * 绑定正常的交换机和队列
     *
     * @return the binding
     */
    @Bean
    public Binding orderBinding() {
        return BindingBuilder
                .bind(orderQueue())
                .to(orderExchange())
                .with(ORDER_ROUTING_KEY)
                .noargs();

    }
}

Consumer端新建一个orderListener,一定要监听死信队列

package org.example.rabbitmq.listener;

import com.rabbitmq.client.Channel;
import org.springframework.amqp.core.Message;
import org.springframework.stereotype.Component;

import java.io.IOException;

/**
 * @ClassName AckListener
 * @Description TODO
 * @Author Patrick Star
 * @Date 2020/12/7 5:50 下午
 */
@Component
@RabbitListener(queues = "order_dl_queue")
public class OrderListener {
    @RabbitHandler
    public void process(String hello, Channel channel, Message message) throws IOException, InterruptedException {
        Thread.sleep(1000);
        long deliveryTag = message.getMessageProperties().getDeliveryTag();
        try {
            // 1. 接受转换消息
            System.out.println("orderListener收到的消息为:" + new String(message.getBody()));

            //2. 处理业务逻辑
            System.out.println("处理业务逻辑...");
            System.out.println("根据订单id查询其状态...");
            System.out.println("判断状态是否为支付成功");
            System.out.println("取消订单,回滚库存....");
            // 3. 手动签收
            channel.basicAck(deliveryTag, true);
        } catch (Exception e) {
            // 4. 拒绝签收
            /*
            第三个参数:requeue:重回队列。如果设置为true,则消息重新回到queue,broker会重新发送该消息给消费端
             */
            channel.basicNack(deliveryTag, true, true);
//            channel.basicReject(deliveryTag,true); 单条数据

            //消息的标识,false只确认当前一个消息收到,true确认所有consumer获得的消息
            //channel.basicAck(message.getMessageProperties().getDeliveryTag(), false);
            //ack返回false,并重新回到队列,api里面解释得很清楚
            //channel.basicNack(message.getMessageProperties().getDeliveryTag(), false, true);
            //拒绝消息
            //channel.basicReject(message.getMessageProperties().getDeliveryTag(), true);
        }


    }


}

我们主要看消费者是不是延迟10秒后收到消息,在消费者控制台打印消息。

延迟队列小结

  1. 延迟队列 指消息进入队列后,可以被延迟一定时间,再进行消费。
  2. RabbitMQ没有提供延迟队列功能,但是可以使用 : TTL + DLX 来实现延迟队列效果

1.7 日志与监控

我的rabbitmq运行在linux服务器上的一个docker容器中,我们可以进入该容器查看日志信息,对于不是docker运行的服务,就直接在服务器上查找。

RabbitMQ默认日志存放路径: /var/log/rabbitmq/rabbit@xxx.log

我们使用docker ps查找我们运行的rabbitmq的容器id

再使用

docker logs 47b

查看docker的输出日志,其中47b是我rabbitmq容器id的前几个字母,里面就可以看到我们的rabbitmq的日志了。

进入容器内,使用命令rabbitmqctl status可以看到我们的Log文件是输出到了输出流,而没有使用文件保存,如果需要查看log文件,参考下面的解决方法

https://blog.csdn.net/fvdfsdafdsafs/article/details/110097643

也可以打开web控制台,也可以看到很多的的参数信息

点击name,可以看到一些负载参数

如果绿色的接近红色,就应该注意了。

也可以通过rabbitmq的控制命令查看

查看队列

rabbitmqctl list_queues

查看exchanges

rabbitmqctl list_exchanges

查看用户

rabbitmqctl list_users

查看连接

rabbitmqctl list_connections

查看消费者信息

rabbitmqctl list_consumers

查看环境变量

rabbitmqctl environment

查看未被确认的队列

rabbitmqctl list_queues name messages_unacknowledged

查看单个队列的内存使用

rabbitmqctl list_queues name memory

查看准备就绪的队列

rabbitmqctl list_queues name messages_ready

1.8 消息追踪

在使用任何消息中间件的过程中,难免会出现某条消息异常丢失的情况。对于RabbitMQ而言,可能是因为生产者或消费者与RabbitMQ断开了连接,而它们与RabbitMQ又采用了不同的确认机制;也有可能是因为交换器与队列之间不同的转发策略;甚至是交换器并没有与任何队列进行绑定,生产者又不感知或者没有采取相应的措施;另外RabbitMQ本身的集群策略也可能导致消息的丢失。这个时候就需要有一个较好的机制跟踪记录消息的投递过程,以此协助开发和运维人员进行问题的定位。

在RabbitMQ中可以使用Firehose和rabbitmq_tracing插件功能来实现消息追踪。

firehose的机制是将生产者投递给rabbitmq的消息,rabbitmq投递给消费者的消息按照指定的格式发送到默认的exchange上。这个默认的exchange的名称为amq.rabbitmq.trace,它是一个topic类型的exchange。发送到这个exchange上的消息的routing key为 publish.exchangename 和 deliver.queuename。其中exchangename和queuename为实际exchange和queue的名称,分别对应生产者投递到exchange的消息,和消费者从queue上获取的消息。

如何使用呢,我们可以将一个队列绑定到默认交换机,routing key 就为test_trace好了,然后往这个队列发消息,默认交换机会把消息转发到队列,同时,队列还收到了两条消息,是trace交换机发的详细的日志消息。

注意:打开 trace 会影响消息写入功能,适当打开后请关闭。

  • rabbitmqctl trace_on:开启Firehose命令

  • rabbitmqctl trace_off:关闭Firehose命令

rabbitmq_tracing和Firehose在实现上如出一辙,只不过rabbitmq_tracing的方式比Firehose多了一层GUI的包装,更容易使用和管理。

我们要做的就是启用插件:rabbitmq-plugins enable rabbitmq_tracing

首先进入 docker 容器内部,执行rabbitmq-plugins list命令

root@47b96c4e50ef:/# rabbitmq-plugins list
Listing plugins with pattern ".*" ...
 Configured: E = explicitly enabled; e = implicitly enabled
 | Status: * = running on rabbit@47b96c4e50ef
 |/
[  ] rabbitmq_amqp1_0                  3.8.9
[  ] rabbitmq_auth_backend_cache       3.8.9
[  ] rabbitmq_auth_backend_http        3.8.9
[  ] rabbitmq_auth_backend_ldap        3.8.9
[  ] rabbitmq_auth_backend_oauth2      3.8.9
[  ] rabbitmq_auth_mechanism_ssl       3.8.9
[  ] rabbitmq_consistent_hash_exchange 3.8.9
[  ] rabbitmq_event_exchange           3.8.9
[  ] rabbitmq_federation               3.8.9
[  ] rabbitmq_federation_management    3.8.9
[  ] rabbitmq_jms_topic_exchange       3.8.9
[E*] rabbitmq_management               3.8.9
[e*] rabbitmq_management_agent         3.8.9
[  ] rabbitmq_mqtt                     3.8.9
[  ] rabbitmq_peer_discovery_aws       3.8.9
[  ] rabbitmq_peer_discovery_common    3.8.9
[  ] rabbitmq_peer_discovery_consul    3.8.9
[  ] rabbitmq_peer_discovery_etcd      3.8.9
[  ] rabbitmq_peer_discovery_k8s       3.8.9
[E*] rabbitmq_prometheus               3.8.9
[  ] rabbitmq_random_exchange          3.8.9
[  ] rabbitmq_recent_history_exchange  3.8.9
[  ] rabbitmq_sharding                 3.8.9
[  ] rabbitmq_shovel                   3.8.9
[  ] rabbitmq_shovel_management        3.8.9
[  ] rabbitmq_stomp                    3.8.9
[  ] rabbitmq_top                      3.8.9
[  ] rabbitmq_tracing                  3.8.9
[  ] rabbitmq_trust_store              3.8.9
[e*] rabbitmq_web_dispatch             3.8.9
[  ] rabbitmq_web_mqtt                 3.8.9
[  ] rabbitmq_web_mqtt_examples        3.8.9
[  ] rabbitmq_web_stomp                3.8.9
[  ] rabbitmq_web_stomp_examples       3.8.9

查看我们启用的插件,带*的就是启用了

然后输入

rabbitmq-plugins enable rabbitmq_tracing

然后在web控制台,刷新一下,点击admin标签,可以看到右边多了一个tracing标签

可以在这里添加新的tracing

Virtual host:虚拟主机名

Name :tracing 的名称,将来可以在这个tracing中记录很多的日志信息

Format:日志信息的格式,一种是text,一种是json,text是给我们程序员看的,是明文的,json便于计算机解析,经过base64编码了

Max payload bytes:不填就把所有的消息体记录起来,填个10就表示取前10个字节

Pattern:#表示的接收所有的消息,不管是发过来的还是消费的都可,如果只想接受发过来的,就填publish.#,如果想接收消费的,就填deliver.#

添加完后上边就多了一些东西,点进去右边的mytrace.log现在是啥都没有,我们往里面发一些消息,就可以看到一些日志信息了。

点开队列列表可以看到多了一个队列记录我们的日志消息

这个队列绑定的是amq.rabbitmq.trace交换机

2. RabbitMQ应用问题

2.1 消息可靠性保障

我们想要消息100%发送成功似乎是不可能的,但是我们最起码可以保证消息99.9%能发送成功吧。其中就用到了消息补偿。

来看一张图,其中producer 和 consumer都有自己对应的数据库,正常情况下,producer将业务数据入库,发送消息到Q1,consumer监听Q1,接收消息去消费,完成相应的DB操作。

考虑不正常的情况,producer操作数据库成功了,但是第2步发送消息失败了,这样consumer收不到消息,业务操作也会失败,这时候怎么办呢,producer发送消息完成之后,到第3步,延迟发送消息到Q3,也就是说,发送一条消息之后等待一段时间再发一条消息到Q3,这两个消息一模一样,如果消息到Q1发送成功,consumer消费成功后要向Q2发送确认消息,相当于consumer转换了一次角色,变成了生产端,我们有个回调检查服务,监听了Q2的确认消息,收到确认消息,将消息写入消息数据库中。而回调检查服务也监听着Q3,Q1、Q2、Q3中的消息ID是一样的,收到Q3的消息后,回调检查服务要去比对当前这条消息是否和刚才写入MDB的消息是否一致,检查是否被消费过,没有被消费过得话,MDB一定不存在记录,则转到第8步,producer重新发送消息。最后还有个问题,如果第2步第3步都失败了呢,我们还有个最后的保障,也就是定时检查服务,检查业务数据库DB和消息MDB是否能匹配,检查DB是不是比MDB的数据多了,或者匹配不上了,再去调用producer,重发那些多的消息。

2.2 消息幂等性保障

幂等性指一次和多次请求某一个资源,对于资源本身应该具有同样的结果。也就是说,其任意多次执行对资源本身所产生的影响均与一次执行的影响相同。

在MQ中指,消费多条相同的消息,得到与消费该消息一次相同的结果。

举个栗子,我花了500买衣服,所以服务器会发消息到MQ去扣款,下订单付款的时候,可能由于网络的原因,不管是什么原因,总之我发了两条扣款500的消息,总不能扣我1000块吧,RabbitMQ采取了用数据库乐观锁的机制来保障消息的幂等性。

这里的乐观锁,就是给消息加了个版本号,由上图的例子,consumer第一次执行消息写入数据库,version是1,乐观锁会将id与version绑定,且version取出来加1,下一条消息来了的时候,consumer想写数据库的时候判断条件 id = 1 and version = 1便不成立了。

幂等性其实有很多的保障机制,这里只介绍了乐观锁的机制。

举报

相关推荐

0 条评论