2022年的一本书,只有376页。证明直接去书里面找。
目录
- 1 介绍
- 1.1 啥是RiordanArray
- 1.2 起源和研究动机
- 1.3 基础的应用
- 章后练习
- 参考
1 介绍
1.1 啥是RiordanArray
1.2 起源和研究动机
1.3 基础的应用
常见的如下:
(*用于快速验证的Mathematica代码*)
Clear["Global`*"]
RiordanArray[p_, q_, numOfRows_Integer] :=
Table[SeriesCoefficient[p*q^k, {z, 0, n}], {n, 0, numOfRows}, {k, 0,
n}] // Grid;
GenerateMatricesVLT[T_, L1_, numOfRows_Integer] :=
Module[{MatrixV, MatrixL, matrixT},
MatrixV = RiordanArray[T, L1, numOfRows];
MatrixL = RiordanArray[1, L1, numOfRows];
MatrixT = RiordanArray[T, z, numOfRows];
{MatrixV, MatrixL, MatrixT}]
CatalanGF = Sum[CatalanNumber[n]*z^n, {n, 0, Infinity}];
GenerateMatricesVLT[CatalanGF, z*CatalanGF^2, 8]
TenaryNumberGF = Sum[Binomial[3 n, n]/(2*n + 1)*z^n, {n, 0, Infinity}];
GenerateMatricesVLT[TenaryNumberGF^2, 2 (TenaryNumberGF - 1), 8]
Clear["Global`*"];
ASequenceOfTheUURTree[z_] := 1 + z^2;
DerivativeASequenceOfTheUURTree[z_] = D[ASequenceOfTheUURTree[z], z];
T = GF /. Solve[GF == ASequenceOfTheUURTree[z*GF], GF][[1]]
L1 = z*DerivativeASequenceOfTheUURTree[z*T]
RiordanArray[p_, q_, numOfRows_Integer] :=
Table[SeriesCoefficient[p*q^k, {z, 0, n}], {n, 0, numOfRows}, {k, 0,
n}] // Grid;
GenerateMatricesVLT[T_, L1_, numOfRows_Integer] :=
Module[{MatrixV, MatrixL, matrixT},
MatrixV = RiordanArray[T, L1, numOfRows];
MatrixL = RiordanArray[1, L1, numOfRows];
MatrixT = RiordanArray[T, z, numOfRows];
{MatrixV, MatrixL, MatrixT}]
GenerateMatricesVLT[T, L1, 8]