0
点赞
收藏
分享

微信扫一扫

Storm并发机制详解


本文可作为 <<Storm-分布式实时计算模式>>一书1.4节的读书笔记
在Storm中,一个task就可以理解为在集群中某个节点上运行的一个spout或者bolt实例。
记住一个task是一个实例。 实例明白吧
Class Person 是一个类, persona,personb都是Person的一个实例。


在集群运行运行中,topology主要有四个组成部分。
他们从低到高分别是task(bolt/spout实例),Executor(线程),Workers(JVM虚拟机),Nodes(服务器)


task上面已经说过,task的nextTuple和execute方法会被executor线程调用
Executor是jvm进程中运行的一个java线程,多个task可以分配给同一个executor来执行。也就是说executor与task是一对多的关系。不过,除非明确指定,Storm会默认给每个executor分配一个task。默认是一对一。
Workers,指的是node上独立的jvm进程。每个node可以配置运行一个或者多个worker。一个topology会分配到一个或者多个worker上运行。
Nodes,指配置在一个 Storm 集群中的服务器,会执行 topology 的一部分运算。一个 Storm 集群可以包括一个或者多个工作 node。
我们看下面的例子

package Storm.blueprints.chapter1.v1;


import backtype.Storm.Config;
import backtype.Storm.LocalCluster;
import backtype.Storm.topology.TopologyBuilder;
import backtype.Storm.tuple.Fields;
import static Storm.blueprints.utils.Utils.*;


public class WordCountTopology {


private static final String SENTENCE_SPOUT_ID = "sentence-spout";
private static final String SPLIT_BOLT_ID = "split-bolt";
private static final String COUNT_BOLT_ID = "count-bolt";
private static final String REPORT_BOLT_ID = "report-bolt";
private static final String TOPOLOGY_NAME = "word-count-topology";


public static void main(String[] args) throws Exception {


SentenceSpout spout = new SentenceSpout();
SplitSentenceBolt splitBolt = new SplitSentenceBolt();
WordCountBolt countBolt = new WordCountBolt();
ReportBolt reportBolt = new ReportBolt();




TopologyBuilder builder = new TopologyBuilder();


builder.setSpout(SENTENCE_SPOUT_ID, spout);
// SentenceSpout --> SplitSentenceBolt
builder.setBolt(SPLIT_BOLT_ID, splitBolt)
.shuffleGrouping(SENTENCE_SPOUT_ID);
// SplitSentenceBolt --> WordCountBolt
builder.setBolt(COUNT_BOLT_ID, countBolt)
.fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));
// WordCountBolt --> ReportBolt
builder.setBolt(REPORT_BOLT_ID, reportBolt)
.globalGrouping(COUNT_BOLT_ID);


Config config = new Config();


LocalCluster cluster = new LocalCluster();


cluster.submitTopology(TOPOLOGY_NAME, config, builder.createTopology());
waitForSeconds(10);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown();
}
}

程序执行完毕后,在控制台可以看到类似以下的输出:

Storm并发机制详解_单词计数



很简单,就是就经典的数单词数量的topology,大家根据各个类的名字,应该也能猜出来内部的逻辑。


里面的代码,我就不贴出来了,大家自己都能找到很多。


我们知道在设置spout/bolt的时候如果不设置parallelism_hint,就默认为1


它的整体的并行图,如下:


Storm并发机制详解_实时计算_02



正如在图中看到的,唯一的并发机制出现在线程级。每个任务在同一个 JVM 的不同线程中执行。如何增加并发度以充分利用硬件能力?让我们来增加分配给topology 的


worker 和 executer 的数量。




配置executor和task


  我们把  sentencespout的并发度调成2,并且worker不变。代码如下:

//这个2 指的是有两个executor 和task的数量无关 不过在这行代码里,我们没有指定task的数量,因为executor为2 那么task也就是2 
builder.setSpout(SENTENCE_SPOUT_ID, spout, 2);

那么它的并行图如下:


Storm并发机制详解_实时计算_03



配置worker数量


  这个很简单,我们在config里设置一下就OK


        Config config = new Config();


        config.setNumWorkers(2);


下一步,我们给语句分割 bolt SplitSentenceBolt 设置 4 个 task 和 2 个 executor。每个executor 线程指派 2 个 task 来执行(4/2=2)。还将配置单词计数 bolt 运行四个 task,每个task 由一个 executor 线程执行:



builder.setBolt(SPLIT_BOLT_ID, splitBolt, 2)
.setNumTasks(4)
.shuffleGrouping(SENTENCE_SPOUT_ID);
// SplitSentenceBolt --> WordCountBolt
builder.setBolt(COUNT_BOLT_ID, countBolt, 4)
.fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));
// WordCountBolt --> ReportBolt

这么一来,整体的运行图就是下面的样子了


Storm并发机制详解_服务器_04


此时,运行代码,每个单词的计数比原topology 要多:

结果如下:

Storm并发机制详解_实时计算_05






书中的代码




本文所引用的例子在Chapter01中


举报

相关推荐

0 条评论