Problem Description
How many nondecreasing subsequences can you find in the sequence S = {s1, s2, s3, ...., sn} ? For example, we assume that S = {1, 2, 3}, and you can find seven nondecreasing subsequences, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
Input
The input consists of multiple test cases. Each case begins with a line containing a positive integer n that is the length of the sequence S, the next line contains n integers {s1, s2, s3, ...., sn}, 1 <= n <= 100000, 0 <= si <= 2^31.
Output
For each test case, output one line containing the number of nondecreasing subsequences you can find from the sequence S, the answer should % 1000000007.
Sample Input
3
1 2 3
Sample Output
7
题目大概:
求一个序列的子序列数。
思路:
用dp推出答案,用树状数组优化。
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int n;
int b[100010];
long long c[100010];
int dp[100010];
int pp=1000000007;
struct poin
{
int v,id;
}a[100010];
bool cmp(const poin a,const poin b)
{
return a.v<b.v;
}
int lowbit(int x)
{
return x&(-x);
}
int add(int x,int v)
{
while(x<=100001)
{
c[x]+=v;
c[x]=c[x]%pp;
x=x+lowbit(x);
}
}
long long sum(int x)
{
long long su=0;
while(x>0)
{
su+=c[x];
su=su%pp;
x-=lowbit(x);
}
return su;
}
int main()
{
while(~scanf("%d",&n))
{
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i].v);
a[i].id=i;
}
sort(a+1,a+n+1,cmp);
b[a[1].id]=1;
int o=2;
for(int i=2;i<=n;i++)
{
if(a[i].v==a[i-1].v)b[a[i].id]=b[a[i-1].id];
else b[a[i].id]=o++;
}
for(int i=1;i<=n;i++)
{
dp[i]=sum(b[i])+1;
add(b[i],dp[i]);
}
printf("%d\n",sum(n));
}
return 0;
}