0
点赞
收藏
分享

微信扫一扫

1020(树状数组,逆序对+离散化)



Problem Description



1020(树状数组,逆序对+离散化)_算法

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence


9 1 0 5 4 ,

Ultra-QuickSort produces the output


0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.




Input


The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.


Sample Input


5
9
1
0
5
4
3
1
2
3
0




Sample Output

6
0




题目大概+思路:

逆序对数量的模板题。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;


int c[500001];
int b[500002];
int lowbit(int x)
{
return x&(-x);
}

void add(int x,int v)
{
while(x<=500001)
{
c[x]+=v;
x+=lowbit(x);
}

}

long long sum(int x)
{
long long sum=0;
while(x>0)
{
sum+=c[x];
x-=lowbit(x);
}
return sum;
}

struct poin
{
int v,id;
}a[500005];

int cmp(const poin a,const poin b)
{
if(a.v<b.v)return 1;
else return 0;
}
int main()
{
int n;
while(scanf("%d",&n)&&n)
{

memset(c,0,sizeof(c));
memset(b,0,sizeof(b));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i].v);
a[i].id=i;

}
sort(a+1,a+n+1,cmp);

b[a[1].id]=1;
int o=2;
for(int i=2;i<=n;i++)
{
if(a[i].v==a[i-1].v)b[a[i].id]=b[a[i-1].id];
else b[a[i].id]=o++;
}


long long su=0;
for(int j=1;j<=n;j++)
{
add(b[j],1);
su+=j-sum(b[j]);

}
printf("%I64d\n",su);
}

return 0;
}






举报

相关推荐

0 条评论