题目:
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition. 思路:
本题题目出得花里胡哨的,其实这类BTS的题目都是毫无意义的,只要抓住递归的本质,首先做这类与数据结构密切相关的题目时,一定要熟悉BTS的性质:
(1)若左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(p->val<root->val&&q->val<root->val)
return lowestCommonAncestor(root->left,p,q);
else if(p->val>root->val&&q->val>root->val)
return lowestCommonAncestor(root->right,p,q);
else
return root;
}
};