0
点赞
收藏
分享

微信扫一扫

查看pytorch网络模型结构及各层参数

前言

​ 搜索引擎是对数据的检索,而数据总体分为两种:结构化数据和非结构化数据。而对于结构化数据,因为他们具有特定的结构,所以一般都是可以通过关系型数据库MySQL/oracle的二维表的方式存储和搜索,也可以建立索引。

​ 对于非结构化数据,对他们进行搜索主要有两种方法:顺序扫描、全文检索。而全文检索就依靠Apache 的 Lucene全文检索引擎工具包。

核心概念

​ **ES 是使用 Java 编写的一种开源搜索引擎,它在内部使用 Lucene 做索引与搜索,通过对 Lucene 的封装,隐藏了 Lucene 的复杂性,取而代之的提供一套简单一致的 RESTful API。**然而,Elasticsearch 不仅仅是 Lucene,并且也不仅仅只是一个全文搜索引擎。

特性1:可扩展-集群(Cluster)

​ ES 的集群搭建很简单,不需要依赖第三方协调管理组件,自身内部就实现了集群的管理功能。

ES 集群由一个或多个 Elasticsearch 节点组成,每个节点配置相同的 cluster.name 即可加入集群,默认值为 “elasticsearch”。确保不同的环境中使用不同的集群名称,否则最终会导致节点加入错误的集群。

一个 Elasticsearch 服务启动实例就是一个节点(Node)。节点通过 node.name 来设置节点名称,如果不设置则在启动时给节点分配一个随机通用唯一标识符作为名称。

1、发现机制

​ ES通过设置通用的集群名称就可以连接到同一个集群,其内部是依靠Zen Discovery。Zen Discovery 是 Elasticsearch 的内置默认发现模块(发现模块的职责是发现集群中的节点以及选举 Master 节点)。它提供单播和基于文件的发现,并且可以扩展为通过插件支持云环境和其他形式的发现。

​ Zen Discovery 与其他模块集成,例如,节点之间的所有通信都使用 Transport 模块完成。节点使用发现机制通过 Ping 的方式查找其他节点。Elasticsearch 默认被配置为使用单播发现,以防止节点无意中加入集群。只有在同一台机器上运行的节点才会自动组成集群。

2、选举

​ 如果你使用 Master 候选节点作为单播列表,你只要列出三个就可以了。这个配置在 elasticsearch.yml 文件中:

discovery.zen.ping.unicast.hosts: ["host1", "host2:port"]  

​ 节点启动后先 Ping ,如果 discovery.zen.ping.unicast.hosts 有设置,则 Ping 设置中的 Host ,否则尝试 ping localhost 的几个端口。

​ **Elasticsearch 支持同一个主机启动多个节点,Ping 的 Response 会包含该节点的基本信息以及该节点认为的 Master 节点。选举开始,先从各节点认为的 Master 中选,规则很简单,按照 ID 的字典序排序,取第一个。**如果各节点都没有认为的 Master ,则从所有节点中选择,规则同上。

​ 这里有个限制条件就是 discovery.zen.minimum_master_nodes ,如果节点数达不到最小值的限制,则循环上述过程,直到节点数足够可以开始选举。最后选举结果是肯定能选举出一个 Master ,如果只有一个 Local 节点那就选出的是自己。

如果当前节点是 Master ,则开始等待节点数达到 discovery.zen.minimum_master_nodes,然后提供服务。如果当前节点不是 Master ,则尝试加入 Master 。Elasticsearch 将以上服务发现以及选主的流程叫做 Zen Discovery 。

3、节点角色

每个节点既可以是候选主节点也可以是数据节点,通过在配置文件 …/config/elasticsearch.yml 中设置即可,默认都为 true。

node.master: true  //是否候选主节点  
node.data: true    //是否数据节点  

数据节点负责数据的存储和相关的操作,例如对数据进行增、删、改、查和聚合等操作,所以数据节点(Data 节点)对机器配置要求比较高,对 CPU、内存和 I/O 的消耗很大。通常随着集群的扩大,需要增加更多的数据节点来提高性能和可用性。

​ 候选主节点可以被选举为主节点(Master 节点),集群中只有候选主节点才有选举权和被选举权,其他节点不参与选举的工作。主节点负责创建索引、删除索引、跟踪哪些节点是群集的一部分,并决定哪些分片分配给相关的节点、追踪集群中节点的状态等,稳定的主节点对集群的健康是非常重要的。

协调节点

​ **主节点和其他节点的心跳机制都是采用Ping的方式进行相互检查。虽然做了角色区分,但是用户的请求可以发往任何一个节点,并由该节点执行请求分发、收集结果等,不需要主节点转发。而这些节点可称之协调节点,**协调节点是不需要指定和配置的,集群中的任何节点都可以充当协调节点的角色。

脑裂

如果由于网络或其他原因导致集群中选举出多个 Master 节点,使得数据更新时出现不一致,这种现象称之为脑裂,即集群中不同的节点对于 Master 的选择出现了分歧,出现了多个 Master 竞争。

如何解决脑裂?

  • 适当调大响应时间,减少误判。 通过参数 discovery.zen.ping_timeout 设置节点状态的响应时间,默认为 3s,可以适当调大。

​ 如果 Master 在该响应时间的范围内没有做出响应应答,判断该节点已经挂掉了。调大参数(如 6s,discovery.zen.ping_timeout:6),可适当减少误判。

  • 选举触发。 我们需要在候选集群中的节点的配置文件中设置参数 discovery.zen.munimum_master_nodes 的值。这个参数表示在选举主节点时需要参与选举的候选主节点的节点数,默认值是 1,官方建议取值(master_eligibel_nodes2)+1,其中 master_eligibel_nodes 为候选主节点的个数。

​ 这样做既能防止脑裂现象的发生,也能最大限度地提升集群的高可用性,因为只要不少于 discovery.zen.munimum_master_nodes 个候选节点存活,选举工作就能正常进行。当小于这个值的时候,无法触发选举行为,集群无法使用,不会造成分片混乱的情况。

  • **角色分离。**这样可以减轻主节点的负担,防止主节点的假死状态发生,减少对主节点“已死”的误判。

特性2:分布式-分片

ES 支持 PB 级全文搜索,当索引上的数据量太大的时候,ES 通过水平拆分的方式将一个索引上的数据拆分出来分配到不同的数据块上,拆分出来的数据库块称之为一个分片。 这类似于 MySQL 的分库分表,只不过 MySQL 分库分表需要借助第三方组件而 ES 内部自身实现了此功能。

​ **在一个多分片的索引中写入数据时,通过路由来确定具体写入哪一个分片中,所以在创建索引的时候需要指定分片的数量,并且分片的数量一旦确定就不能修改。**分片的数量和副本数量都是可以通过创建索引时的 Settings 来配置,**ES 默认为一个索引创建 5 个主分片, 并分别为每个分片创建一个副本。

​ ES 通过分片的功能使得索引在规模上和性能上都得到提升,每个分片都是 Lucene 中的一个索引文件,每个分片必须有一个主分片和零到多个副本。

副本

副本就是对分片的 Copy,每个主分片都有一个或多个副本分片,当主分片异常时,副本可以提供数据的查询等操作。主分片和对应的副本分片是不会在同一个节点上的,所以副本分片数的最大值是 N-1(其中 N 为节点数)。

​ 对文档的新建、索引和删除请求都是写操作,必须在主分片上面完成之后才能被复制到相关的副本分片。**ES 为了提高写入的能力这个过程是并发写的,同时为了解决并发写的过程中数据冲突的问题,ES 通过乐观锁的方式控制,每个文档都有一个 _version (版本)号,当文档被修改时版本号递增。**一旦所有的副本分片都报告写成功才会向协调节点报告成功,协调节点向客户端报告成功。

小结

​ 将数据分片是为了提高可处理数据的容量和易于进行水平扩展,为分片做副本是为了提高集群的稳定性和提高并发量。副本是乘法,越多消耗越大,但也越保险。分片是除法,分片越多,单分片数据就越少也越分散。

副本越多,集群的可用性就越高,但是由于每个分片都相当于一个 Lucene 的索引文件,会占用一定的文件句柄、内存及 CPU。并且分片间的数据同步也会占用一定的网络带宽,所以索引的分片数和副本数也不是越多越好。

特性3:近实时的搜索与数据分析 (数据结构)

​ **映射Mapping是用于定义 ES 对索引中字段的存储类型、分词方式和是否存储等信息,就像数据库中的 Schema ,描述了文档可能具有的字段或属性、每个字段的数据类型。**只不过关系型数据库建表时必须指定字段类型,而 ES 对于字段类型可以不指定然后动态对字段类型猜测,也可以在创建索引时具体指定字段的类型。

对字段类型根据数据格式自动识别的映射称之为动态映射(Dynamic Mapping),创建索引时具体定义字段类型的映射称之为静态映射或显示映射(Explicit Mapping)。

数据类型

​ ES(v6.8)中字段数据类型主要有以下几类:

图片

Text

​ **Text 用于索引全文值的字段,例如电子邮件正文或产品说明。这些字段是被分词的,它们通过分词器传递 ,以在被索引之前将字符串转换为单个术语的列表。**分析过程允许 Elasticsearch 搜索单个单词中每个完整的文本字段。文本字段不用于排序,很少用于聚合。

Keyword

Keyword 用于索引结构化内容的字段,例如电子邮件地址,主机名,状态代码,邮政编码或标签。它们通常用于过滤,排序,和聚合。Keyword 字段只能按其确切值进行搜索。

Date

​ 时间字段也许我们需要指定它的时间格式,还有一些字段我们需要指定特定的分词器等等。

例子

​ 所以创建索引的时候一个完整的格式应该是指定分片和副本数以及 Mapping 的定义,如下:

PUT my_index   
{  
   "settings" : {  
      "number_of_shards" : 5,  
      "number_of_replicas" : 1  
   }  
  "mappings": {  
    "_doc": {   
      "properties": {   
        "title":    { "type": "text"  },   
        "name":     { "type": "text"  },   
        "age":      { "type": "integer" },    
        "created":  {  
          "type":   "date",   
          "format": "strict_date_optional_time||epoch_millis"  
        }  
      }  
    }  
  }  
}  

旁外话1-版本的选型

版本问题

​ 在决定使用 Elasticsearch 的时候首先要考虑的是版本问题,Elasticsearch (排除 0.x 和 1.x)目前有如下常用的稳定的主版本:2.x,5.x,6.x,7.x(current)。你可能会发现没有 3.x 和 4.x,ES 从 2.4.6 直接跳到了 5.0.0。其实是为了 ELK(ElasticSearch,Logstash,Kibana)技术栈的版本统一,免的给用户带来混乱。

​ 在 Elasticsearch 是 2.x (2.x 的最后一版 2.4.6 的发布时间是 July 25, 2017) 的情况下,Kibana 已经是 4.x(Kibana 4.6.5 的发布时间是 July 25, 2017)。

​ 那么在 Kibana 的下一主版本肯定是 5.x 了,所以 Elasticsearch 直接将自己的主版本发布为 5.0.0 了。

​ 统一之后,我们选版本就不会犹豫困惑了,我们选定 Elasticsearch 的版本后再选择相同版本的 Kibana 就行了,不用担忧版本不兼容的问题。

JDK版本

Elasticsearch 是使用 Java 构建,所以除了注意 ELK 技术的版本统一,我们在选择 Elasticsearch 的版本的时候还需要注意 JDK 的版本。因为每个大版本所依赖的 JDK 版本也不同,目前 7.2 版本已经可以支持 JDK11。

旁外话2-集群的健康状态

​ 要检查群集运行状况,我们可以在 Kibana 控制台中运行以下命令 GET /_cluster/health,得到如下信息:

{  
  "cluster_name" : "wujiajian",  
  "status" : "yellow",  
  "timed_out" : false,  
  "number_of_nodes" : 1,  
  "number_of_data_nodes" : 1,  
  "active_primary_shards" : 9,  
  "active_shards" : 9,  
  "relocating_shards" : 0,  
  "initializing_shards" : 0,  
  "unassigned_shards" : 5,  
  "delayed_unassigned_shards" : 0,  
  "number_of_pending_tasks" : 0,  
  "number_of_in_flight_fetch" : 0,  
  "task_max_waiting_in_queue_millis" : 0,  
  "active_shards_percent_as_number" : 64.28571428571429  
}  

集群状态通过 绿,黄,红 来标识:

  • 绿色:集群健康完好,一切功能齐全正常,所有分片和副本都可以正常工作。
  • 黄色:**预警状态,所有主分片功能正常,但至少有一个副本是不能正常工作的。**此时集群是可以正常工作的,但是高可用性在某种程度上会受影响。
  • 红色:**集群不可正常使用。某个或某些分片及其副本异常不可用,这时集群的查询操作还能执行,但是返回的结果会不准确。**对于分配到这个分片的写入请求将会报错,最终会导致数据的丢失。

当集群状态为红色时,它将会继续从可用的分片提供搜索请求服务,但是你需要尽快修复那些未分配的分片。

ES 机制原理

写索引原理

​ 一般来说3 个节点的集群,共拥有 12 个分片,其中有 4 个主分片(S0、S1、S2、S3)和 8 个副本分片(R0、R1、R2、R3),每个主分片对应两个副本分片,节点 1 是主节点(Master 节点)负责整个集群的状态。

​ **写索引是只能写在主分片上,然后同步到副本分片。**这里有四个主分片,一条数据 ES 是根据什么规则写到特定分片上的呢?实际上,这个过程是根据下面这个公式决定的:

shard = hash(routing) % number_of_primary_shards  

​ Routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。Routing 通过 Hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)后得到余数。

​ **这个在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求的文档所在分片的位置。**这也就是要在创建索引的时候就确定好主分片的数量并且永远不会改变这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。

​ 由于在 ES 集群中每个节点通过上面的计算公式都知道集群中的文档的存放位置,所以每个节点都有处理读写请求的能力。在一个写请求被发送到某个节点后,该节点即为前面说过的协调节点,协调节点会根据路由公式计算出需要写到哪个分片上,再将请求转发到该分片的主分片节点上。

存储原理

​ 上面说明在 ES 内部索引的写处理流程,这个流程是在 ES 的内存中执行的,数据被分配到特定的分片和副本上之后,最终是存储到磁盘上的,这样在断电的时候就不会丢失数据。

具体的存储路径可在配置文件 ../config/elasticsearch.yml 中进行设置,默认存储在安装目录的 Data 文件夹下。建议不要使用默认值,因为若 ES 进行了升级,则有可能导致数据全部丢失

path.data: /path/to/data  //索引数据  
path.logs: /path/to/logs  //日志记录  

分段存储

索引文档以段的形式存储在磁盘上。索引文件被拆分为多个子文件,则每个子文件叫作段,每一个段本身都是一个倒排索引,并且段具有不变性,一旦索引的数据被写入硬盘,就不可再修改。

​ 在底层采用了分段的存储模式,使它在读写时几乎完全避免了锁的出现,大大提升了读写性能。段被写入到磁盘后会生成一个提交点,提交点是一个用来记录所有提交后段信息的文件。一个段一旦拥有了提交点,就说明这个段只有读的权限,失去了写的权限。相反,当段在内存中时,就只有写的权限,而不具备读数据的权限,意味着不能被检索。

数据更新如何处理?

  • 新增,新增很好处理,由于数据是新的,所以只需要对当前文档新增一个段就可以了。
  • **删除,由于不可修改,所以对于删除操作,不会把文档从旧的段中移除而是通过新增一个 .del 文件,文件中会列出这些被删除文档的段信息。**这个被标记删除的文档仍然可以被查询匹配到, 但它会在最终结果被返回前从结果集中移除。
  • **更新,不能修改旧的段来进行反映文档的更新,其实更新相当于是删除和新增这两个动作组成。会将旧的文档在 .del 文件中标记删除,然后文档的新版本被索引到一个新的段中。**可能两个版本的文档都会被一个查询匹配到,但被删除的那个旧版本文档在结果集返回前就会被移除。

优缺点:

延迟写策略

​ 看过mysql底层原理或者RocketMQ的都知道,数据的持久性都是由磁盘来保证的,而为了性能最大化,一般都采用先写入缓存,再刷盘到磁盘中。

​ 为了提升写的性能,ES 并没有每新增一条数据就增加一个段到磁盘上,而是采用延迟写的策略。每当有新增的数据时,就将其先写入到内存中,在内存和磁盘之间是文件系统缓存。

当达到默认的时间(1 秒钟)或者内存的数据达到一定量时,会触发一次刷新(Refresh),将内存中的数据生成到一个新的段上并缓存到文件缓存系统 上,稍后再被刷新到磁盘中并生成提交点。这里的内存使用的是 ES 的 JVM 内存,而文件缓存系统使用的是操作系统的内存。

​ 新的数据会继续的被写入内存,但内存中的数据并不是以段的形式存储的,因此不能提供检索功能。由内存刷新到文件缓存系统的时候会生成新的段,并将段打开以供搜索使用,而不需要等到被刷新到磁盘。

​ **在 Elasticsearch 中,写入和打开一个新段的轻量的过程叫做 Refresh (即内存刷新到文件缓存系统)。默认情况下每个分片会每秒自动刷新一次。**这就是为什么我们说 Elasticsearch 是近实时搜索,因为文档的变化并不是立即对搜索可见,但会在一秒之内变为可见。

当然也可以手动触发 Refresh,POST /_refresh 刷新所有索引,POST /nba/_refresh 刷新指定的索引。

事务日志

为了避免丢失数据,Elasticsearch 添加了事务日志(Translog),事务日志记录了所有还没有持久化到磁盘的数据。

通过这种方式当断电或需要重启时,ES 不仅要根据提交点去加载已经持久化过的段,还需要工具 Translog 里的记录,把未持久化的数据重新持久化到磁盘上,避免了数据丢失的可能。

段合并

​ 由于自动刷新流程每秒会创建一个新的段 ,这样会导致短时间内的段数量暴增。而段数目太多会带来较大的麻烦。每一个段都会消耗文件句柄、内存和 CPU 运行周期。更重要的是,每个搜索请求都必须轮流检查每个段然后合并查询结果,所以段越多,搜索也就越慢。

Elasticsearch 通过在后台定期进行段合并来解决这个问题。小的段被合并到大的段,然后这些大的段再被合并到更大的段。段合并的时候会将那些旧的已删除文档从文件系统中清除。被删除的文档不会被拷贝到新的大段中。合并的过程中不会中断索引和搜索。

​ 段合并在进行索引和搜索时会自动进行,合并进程选择一小部分大小相似的段,并且在后台将它们合并到更大的段中,这些段既可以是未提交的也可以是已提交的。合并结束后老的段会被删除,新的段被 Flush 到磁盘,同时写入一个包含新段且排除旧的和较小的段的新提交点,新的段被打开可以用来搜索。

​ 段合并的计算量庞大, 而且还要吃掉大量磁盘 I/O,段合并会拖累写入速率,如果任其发展会影响搜索性能。Elasticsearch 在默认情况下会对合并流程进行资源限制,所以搜索仍然有足够的资源很好地执行。

六、ES 的性能优化

存储设备

磁盘在现代服务器上通常都是瓶颈。Elasticsearch 重度使用磁盘,你的磁盘能处理的吞吐量越大,你的节点就越稳定。

内部索引优化

​ **Elasticsearch 为了能快速找到某个 Term,先将所有的 Term 排个序,然后根据二分法查找 Term,时间复杂度为 logN,就像通过字典查找一样,这就是 Term Dictionary。**现在再看起来,似乎和传统数据库通过 B-Tree 的方式类似。但是如果 Term 太多,Term Dictionary 也会很大,放内存不现实,于是有了 Term Index。

在内存中用 FST 方式压缩 Term Index,FST 以字节的方式存储所有的 Term,这种压缩方式可以有效的缩减存储空间,使得 Term Index 足以放进内存,但这种方式也会导致查找时需要更多的 CPU 资源。

对于存储在磁盘上的倒排表同样也采用了压缩技术减少存储所占用的空间。

调整配置参数

调整配置参数建议如下:

  • 给每个文档指定有序的具有压缩良好的序列模式 ID,避免随机的 UUID-4 这样的 ID,这样的 ID 压缩比很低,会明显拖慢 Lucene。

  • **对于那些不需要聚合和排序的索引字段禁用 Doc values。**Doc Values 是有序的基于 document=>field value 的映射列表。

  • 不需要做模糊检索的字段使用 Keyword 类型代替 Text 类型,这样可以避免在建立索引前对这些文本进行分词。

  • 如果你的搜索结果不需要近实时的准确度,考虑把每个索引的 index.refresh_interval 改到 30s 。

    如果你是在做大批量导入,导入期间你可以通过设置这个值为 -1 关掉刷新,还可以通过设置 index.number_of_replicas: 0 关闭副本。别忘记在完工的时候重新开启它。

  • 避免深度分页查询建议使用 Scroll 进行分页查询。普通分页查询时,会创建一个 from+size 的空优先队列,每个分片会返回 from+size 条数据,默认只包含文档 ID 和得分 Score 给协调节点。

    如果有 N 个分片,则协调节点再对(from+size)×n 条数据进行二次排序,然后选择需要被取回的文档。当 from 很大时,排序过程会变得很沉重,占用 CPU 资源严重。

  • **减少映射字段,只提供需要检索,聚合或排序的字段。**其他字段可存在其他存储设备上,例如 Hbase,在 ES 中得到结果后再去 Hbase 查询这些字段。

  • **创建索引和查询时指定路由 Routing 值,这样可以精确到具体的分片查询,提升查询效率。**路由的选择需要注意数据的分布均衡。

JVM 调优

JVM 调优建议如下:

  • 确保堆内存最小值( Xms )与最大值( Xmx )的大小是相同的,防止程序在运行时改变堆内存大小。Elasticsearch 默认安装后设置的堆内存是 1GB。可通过 ../config/jvm.option 文件进行配置,但是最好不要超过物理内存的50%和超过 32GB。
  • GC 默认采用 CMS 的方式,并发但是有 STW 的问题,可以考虑使用 G1 收集器。
  • ES 非常依赖文件系统缓存(Filesystem Cache),快速搜索。一般来说,应该至少确保物理上有一半的可用内存分配到文件系统缓存。

总结(常见问题)

1、它们内部是如何运行的?

​ 数据采用乐观锁机制通过算法来判断存储在哪个分片上,先存入缓存,后刷盘到磁盘。缓存中只能写不能读,磁盘中只能读不能写。所以需要删除的数据有专门的文件来进行维护,数据实际上可以查询到,但是不返回,类似Spring后置处理器专门处理一下。

2、主分片和副本分片是如何同步的?

​ 集群的协调节点接收到请求,通过路由算法确定该文档所属的主分片,将请求转发给该主分片所在节点,当主节点写入成功之后,会将请求同时转发给多个对应副分片所在节点。

3、创建索引的流程是什么样的?

1)客户端发送索引请求客户端向ES节点发送索引请求。

​ 以RestClient客户端发起请求为例,ES提供了Java High Level REST Client,可以通过RestClient发送请求:

RestClient restClient = RestClient.builder(new HttpHost("127.0.0.1", 9200, "http"),new HttpHost("127.0.0.2", 9200, "http")           ).build();

​ 其中127.0.0.1,127.0.0.2是ES节点地址,充当coordinate node节点的角色,接收客户端请求,如果设置有专用coorinate node则应该将接受客户端请求的节点设置为该专用节点,负责请求的接受和转发。在RestClient中使用round-robin轮询算法,进行发送节点的选取。

2)参数检查。

​ 对请求中的参数进行检查,检查参数是否合法,不合法的参数直接返回失败给客户端。

3.数据预处理

​ 如果请求指定了pipeline参数,则对数据进行预处理,数据预处理的节点为Ingest Node,如果接受请求的节点不具备数据处理能力,则转发给其他能处理的节点。

​ 在Ingest Node上有定义好的处理数据的Pipeline,Pipeline中有一组定义好的Processor,每个Processor分别具有不同的处理功能,ES提供了一些内置的Processor,如:split、join、set 、script等,同时也支持通过插件的方式,实现自定义的Processor。数据经过Pipeline处理完毕后继续进行下一步操作。

4)判断索引是否存在判断索引是否存在。

​ 如果索引不存在,则判断是否能够自动创建,可以通过action.auto_create_index设置能否自动创建索引;如果节点支持Dynamic Mapping,写入文档时,如果字段尚未在mapping中定义,则会根据索引文档信息推算字段的类型,但并不能完全推算正确。

5)创建索引

​ 创建索引请求被发送到Master节点,由Master节点负责进行索引的创建,索引创建成功后,Master节点会更新集群状态clusterstate。更新完毕后将索引创建的情况返回给Coordinate节点,收到Master节点返回后,进入下一流程。

6)请求预处理

​ 6-1)获取集群状态信息,判断集群是否正常

​ 6-2)从集群状态中获取对应索引的元信息,从元信息中获取索引的mapping、version等信息,从请求中解析routing、id信息,如果请求没有指定文档的id,则会生成一个UUID作为文档的id。

7)路由计算

根据请求的routing、id信息计算文档应该被索引到哪个分片

计算公式为:shard_num = hash(routing) % num_primary_shards

​ 其中routing默认值为文档id,num_primary_shards是主分片个数,所以从算法中即可以看出索引的主分片个数一旦指定便无法修改,因为文档利用主分片的个数来进行定位。

当使用自定义routing或者id时,按照上面的公式计算,数据可能会大量聚集于某些分片,造成数据分布不均衡,所以ES提供了routing_partition_size参数,routing_partition_size越大,数据的分布越均匀。

​ 此时分片的计算公式变为:shard_num = (hash(_routing) + hash(_id) % routing_partition_size) % num_primary_shards

​ **定位到分片序号后,还需要定位分片所属的数据节点;从集群状态的内容路由表获取主分片所在的节点,并将请求转发至节点。**需要注意的是分片到数据节点的映射关系不是固定的,当检测到数据分布不均匀、新节点加入或者节点宕掉等会进行分片的重新分配。

8)主分片索引文档

​ 当主分片所在节点接受到请求后,节点开始进行本节点的文档写入,文档写入过程:

​ 1)**文档写入时,不会直接写入到磁盘中,而是先将文档写入到Index Buffer内存空间中,到一定的时间,Index Buffer会Refresh把内存中的文档写入Segment中。**当文档在Index Buffer中时,是无法被查询到的,这就是ES不是实时搜索,而是近实时搜索的原因。

​ 2)因为文档写入时,先写入到内存中,当文档落盘之前,节点出现故障重启、宕机等,会造成内存中的数据丢失,所以索引写入的同时会同步向Transaction Log写入操作内容。

​ 3)每隔固定的时间间隔ES会将Index Buffer中的文档写入到Segment中,这个写入的过程叫做Refresh,Refresh的时间可以通过index.refresh_interval设置,默认情况下为1秒。

​ 4)写入到Segment中并不代表文档已经落盘,因为Segment写入磁盘的过程相对耗时,Refresh时会先将Segment写入缓存,开放查询,也就是说当文档写入Segment后就可以被查询到。

​ 每次refresh的时候都会生成一个新的segment,太多的Segment会占用过多的资源,而且每个搜索请求都会遍历所有的Segment,Segment过多会导致搜索变慢,所以ES会定期合并Segment,减少Segment的个数,并将Segment和并为一个大的Segment。

在操作Segment时,会维护一个Commit Point文件,其中记录了所有Segment的信息;同时维护.del文件用于记录所有删除的Segment信息。

4、ES 如何将索引数据分配到不同的分片上的?以及这些索引数据是如何存储的?

​ 由shard = hash(routing) % number_of_primary_shards 这个公式来判断分配到哪个分片上。索引数据按段存储,先在缓存中,再经过Refresh生成段存储到磁盘中。

5、为什么说 ES 是近实时搜索引擎而文档的 CRUD (创建-读取-更新-删除) 操作是实时的?

​ 默认情况下Refresh每个分片会每秒自动刷新一次。

​ CRUD也算是近实时,是按照Refresh到磁盘中为依据

6、以及 Elasticsearch 是怎样保证更新被持久化在断电时也不丢失数据?

​ 磁盘文件、事务日志。

​ 根据提交点去加载已经持久化过的段,还需要工具 Translog 里的记录,把未持久化的数据重新持久化到磁盘上

7、还有为什么删除文档不会立刻释放空间?

​ 因为会用于段合并


其他后续再进行填充优化

举报

相关推荐

0 条评论