0
点赞
收藏
分享

微信扫一扫

【Matlab】基于卷积神经网络的时间序列预测(Excel可直接替换数据)

WikongGuan 2023-07-28 阅读 12
matlabcnn

【Matlab】基于卷积神经网络的时间序列预测(Excel可直接替换数据)

1.模型原理

基于卷积神经网络(Convolutional Neural Network,CNN)的时间序列预测是一种用于处理时间序列数据的深度学习方法。与传统的时间序列预测方法相比,CNN能够自动提取输入时间序列中的相关特征,从而实现更准确的预测。下面详细介绍基于CNN的时间序列预测的原理:

  1. 时间序列数据
    时间序列是按时间顺序排列的数据点序列,每个数据点都与一个特定的时间点相关联。时间序列数据常见于各种应用领域,如金融、气象、工业生产等。

  2. 卷积操作
    卷积操作在卷积神经网络中被广泛应用于图像处理。然而,在时间序列预测中,我们可以将时间序列视为一维的信号序列,并应用一维卷积操作。一维卷积操作类似于图像中的二维卷积,但只在一个方向上滑动。它可以帮助网络学习时间序列中的局部模式和特征。

  3. 卷积层
    在时间序列预测中,卷积层是

举报

相关推荐

0 条评论