0
点赞
收藏
分享

微信扫一扫

一题理解回溯算法

快乐小码农 2022-04-25 阅读 68

先阅读此题 -46.全排序I

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:

输入:nums = [1]
输出:[[1]]

我们尝试在纸上写 33 个数字、44 个数字、55 个数字的全排列,相信不难找到这样的方法。以数组 [1, 2, 3] 的全排列为例。

  • 先写以 1 开头的全排列,它们是:[1, 2, 3], [1, 3, 2],即 1 + [2, 3] 的全排列(注意:递归结构体现在这里);
  • 再写以 2 开头的全排列,它们是:[2, 1, 3], [2, 3, 1],即 2 + [1, 3] 的全排列;
  • 最后写以 3 开头的全排列,它们是:[3, 1, 2], [3, 2, 1],即 3 + [1, 2] 的全排列。

总结搜索的方法:按顺序枚举每一位可能出现的情况,已经选择的数字在 当前 要选择的数字中不能出现。按照这种策略搜索就能够做到 不重不漏。这样的思路,可以用一个树形结构表示。

看到这里的朋友,建议先尝试自己画出「全排列」问题的树形结构。

说明:

  • 每一个结点表示了求解全排列问题的不同的阶段,这些阶段通过变量的「不同的值」体现,这些变量的不同的值,称之为「状态」;
  • 使用深度优先遍历有「回头」的过程,在「回头」以后, 状态变量需要设置成为和先前一样 ,因此在回到上一层结点的过程中,需要撤销上一次的选择,这个操作称之为「状态重置」;
  • 深度优先遍历,借助系统栈空间,保存所需要的状态变量,在编码中只需要注意遍历到相应的结点的时候,状态变量的值是正确的,具体的做法是:往下走一层的时候,path 变量在尾部追加,而往回走的时候,需要撤销上一次的选择,也是在尾部操作,因此 path 变量是一个栈;
  • 深度优先遍历通过「回溯」操作,实现了全局使用一份状态变量的效果。

使用编程的方法得到全排列,就是在这样的一个树形结构中完成 遍历,从树的根结点到叶子结点形成的路径就是其中一个全排列。

设计状态变量

  • 首先这棵树除了根结点和叶子结点以外,每一个结点做的事情其实是一样的,即:在已经选择了一些数的前提下,在剩下的还没有选择的数中,依次选择一个数,这显然是一个 递归 结构;
  • 递归的终止条件是: 一个排列中的数字已经选够了 ,因此我们需要一个变量来表示当前程序递归到第几层,我们把这个变量叫做 depth,或者命名为 index ,表示当前要确定的是某个全排列中下标为 index 的那个数是多少;
  • 布尔数组 used,初始化的时候都为 false 表示这些数还没有被选择,当我们选定一个数的时候,就将这个数组的相应位置设置为 true ,这样在考虑下一个位置的时候,就能够以 O(1)O(1) 的时间复杂度判断这个数是否被选择过,这是一种「以空间换时间」的思想。

这些变量称为「状态变量」,它们表示了在求解一个问题的时候所处的阶段。需要根据问题的场景设计合适的状态变量。

package 力扣;

import java.util.ArrayList;
import java.util.List;

class Solution {

    public List<List<Integer>> permute(int[] nums) {
        int len = nums.length;
        // 使用一个动态数组保存所有可能的全排列
        List<List<Integer>> res = new ArrayList<>();
        if (len == 0) {
            return res;
        }

        boolean[] used = new boolean[len];
        List<Integer> path = new ArrayList<>();

        dfs(nums, len, 0, path, used, res);
        return res;
    }

    private void dfs(int[] nums, int len, int depth,
                     List<Integer> path, boolean[] used,
                     List<List<Integer>> res) {
        if (depth == len) {
            res.add(path);
            return;
        }

        // 在非叶子结点处,产生不同的分支,这一操作的语义是:在还未选择的数中依次选择一个元素作为下一个位置的元素,这显然得通过一个循环实现。
        for (int i = 0; i < len; i++) {
            if (!used[i]) {
                path.add(nums[i]);
                used[i] = true;

                dfs(nums, len, depth + 1, path, used, res);
                // 注意:下面这两行代码发生 「回溯」,回溯发生在从 深层结点 回到 浅层结点 的过程,代码在形式上和递归之前是对称的
                used[i] = false;
                path.remove(path.size() - 1);
            }
        }
    }

    public static void main(String[] args) {
        int[] nums = {1, 2, 3};
        Solution solution = new Solution();
        List<List<Integer>> lists = solution.permute(nums);
        System.out.println(lists);
    }
}

执行 main 方法以后输出如下:

[[], [], [], [], [], []]

原因出现在递归终止条件这里:

if (depth == len) {
    res.add(path);
    return;
}

变量 path 所指向的列表 在深度优先遍历的过程中只有一份 ,深度优先遍历完成以后,回到了根结点,成为空列表。

在 Java 中,参数传递是 值传递,对象类型变量在传参的过程中,复制的是变量的地址。这些地址被添加到 res 变量,但实际上指向的是同一块内存地址,因此我们会看到 66 个空的列表对象。解决的方法很简单,在 res.add(path); 这里做一次拷贝即可。

修改的部分:

if (depth == len) {
    res.add(new ArrayList<>(path));
    return;
}

此时再提交到「力扣」上就能得到通过了。

剪枝

回溯算法会应用「剪枝」技巧达到以加快搜索速度。有些时候,需要做一些预处理工作(例如排序)才能达到剪枝的目的。预处理工作虽然也消耗时间,但能够剪枝节约的时间更多;

提示:剪枝是一种技巧,通常需要根据不同问题场景采用不同的剪枝策略,需要在做题的过程中不断总结。

由于回溯问题本身时间复杂度就很高,所以能用空间换时间就尽量使用空间。

总结

做题的时候,建议 先画树形图 ,画图能帮助我们想清楚递归结构,想清楚如何剪枝。拿题目中的示例,想一想人是怎么做的,一般这样下来,这棵递归树都不难画出。

在画图的过程中思考清楚:

分支如何产生;

题目需要的解在哪里?是在叶子结点、还是在非叶子结点、还是在从跟结点到叶子结点的路径?

哪些搜索会产生不需要的解的?例如:产生重复是什么原因,如果在浅层就知道这个分支不能产生需要的结果,应该提前剪枝,剪枝的条件是什么,代码怎么写?

举报

相关推荐

0 条评论