0
点赞
收藏
分享

微信扫一扫

在本地主机使用anaconda3 安装MindSpore环境——教程(GPU版本)



创建MindSpore虚拟环境

  • 创建虚拟环境并安装依赖库

 ​​conda create -n mindspore python=3.7.5 cudatoolkit=10.1 cudnn=7.6.5 gmp=6.1.2 nccl openmpi​


或者分步安装:

​conda create -n mindspore python=3.7.5 ​

conda activate mindspore

conda install ​​cudatoolkit=10.1 cudnn=7.6.5​​conda install ​​gmp=6.1.2​​conda install ​​nccl​​conda install ​​openmpi​


打印环境所有安装的库:

conda list

 在本地主机使用anaconda3 安装MindSpore环境——教程(GPU版本)_python


在本地主机使用anaconda3 安装MindSpore环境——教程(GPU版本)_MindSpore(深度学习计算框架)_02在本地主机使用anaconda3 安装MindSpore环境——教程(GPU版本)_d3_03

# packages in environment at /home/devil/anaconda3/envs/mindspore:
#
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 4.5 1_gnu
asttokens 2.0.5 pypi_0 pypi
astunparse 1.6.3 pypi_0 pypi
ca-certificates 2021.5.25 h06a4308_1
certifi 2021.5.30 py37h06a4308_0
cffi 1.14.5 pypi_0 pypi
cudatoolkit 10.1.243 h6bb024c_0
cudnn 7.6.5 cuda10.1_0
decorator 5.0.9 pypi_0 pypi
easydict 1.9 pypi_0 pypi
gmp 6.1.2 h6c8ec71_1
libedit 3.1.20210216 h27cfd23_1
libffi 3.2.1 hf484d3e_1007
libgcc-ng 9.3.0 h5101ec6_17
libgfortran-ng 7.5.0 ha8ba4b0_17
libgfortran4 7.5.0 ha8ba4b0_17
libgomp 9.3.0 h5101ec6_17
libstdcxx-ng 9.3.0 hd4cf53a_17
mindspore-gpu 1.2.1 pypi_0 pypi
mpi 1.0 openmpi
mpmath 1.2.1 pypi_0 pypi
nccl 2.8.3.1 hcaf9a05_0
ncurses 6.2 he6710b0_1
numpy 1.21.0 pypi_0 pypi
openmpi 4.0.2 hb1b8bf9_1
openssl 1.1.1k h27cfd23_0
packaging 21.0 pypi_0 pypi
pillow 8.3.0 pypi_0 pypi
pip 21.1.3 py37h06a4308_0
protobuf 3.17.3 pypi_0 pypi
psutil 5.8.0 pypi_0 pypi
pycparser 2.20 pypi_0 pypi
pyparsing 2.4.7 pypi_0 pypi
python 3.7.5 h0371630_0
readline 7.0 h7b6447c_5
scipy 1.7.0 pypi_0 pypi
setuptools 52.0.0 py37h06a4308_0
six 1.16.0 pypi_0 pypi
sqlite 3.33.0 h62c20be_0
sympy 1.8 pypi_0 pypi
tk 8.6.10 hbc83047_0
wheel 0.36.2 pyhd3eb1b0_0
xz 5.2.5 h7b6447c_0
zlib 1.2.11 h7b6447c_3

View Code



 所安装的依赖软件库和官方给出的有一定差别,但是后面验证发现可以正常使用,因此这样安装是完全可以的。

 具体说明,参考:​​https://zhuanlan.zhihu.com/p/364284533​​







为  cuda 和  cudnn 配置环境路径:


本人使用anaconda3创建的Python环境地址为:

/home/devil/anaconda3/envs/mindspore/

在本地主机使用anaconda3 安装MindSpore环境——教程(GPU版本)_python_04




在 anaconda3中配置环境:

创建文件夹   etc/conda/activate.d  :

mkdir -p etc/conda/activate.d


在本地主机使用anaconda3 安装MindSpore环境——教程(GPU版本)_MindSpore(深度学习计算框架)_05




配置进入虚拟环境后加入的环境变量:

vim /home/devil/anaconda3/envs/mindspore/etc/conda/activate.d/env_vars.sh


在本地主机使用anaconda3 安装MindSpore环境——教程(GPU版本)_MindSpore(深度学习计算框架)_06



配置内容:

# add library path
export LD_LIBRARY_PATH=/home/devil/anaconda3/envs/mindspore/lib:$LD_LIBRARY_PATH


# then, add system path
export PATH=/home/devil/anaconda3/envs/mindspore/bin:$PATH




# you should modify the code as:
# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/{your_path_to_install_conda}/envs/{your_virtual_env_name}/lib
# export PATH=$PATH:/{your_path_to_install_conda}/envs/{your_virtual_env_name}/bin




退出环境,重新进入:

conda deactivate mindspore

conda activate mindspore





测试是否安装配置成功:

测试文件:

import numpy as np
from mindspore import Tensor
import mindspore.ops as ops
import mindspore.context as context

context.set_context(device_target="GPU")
x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = Tensor(np.ones([1,3,3,4]).astype(np.float32))
print(ops.add(x, y))



在本地主机使用anaconda3 安装MindSpore环境——教程(GPU版本)_d3_07





成功运行,证明虽然安装的软件版本与官方的有略微差别但是其兼容性还是不影响code的运行的。





举报

相关推荐

0 条评论