0
点赞
收藏
分享

微信扫一扫

LeetCode题解(0296):最佳的碰头地点(Python)


题目:​​原题链接​​(困难)

标签:数学、排序、广度优先搜索、图

解法

时间复杂度

空间复杂度

执行用时

Ans 1 (Python)

O ( N × M × P ) : 其中P为人数

O ( N × M )

超出时间限制

Ans 2 (Python)

O ( N × M )

O ( N × M )

60ms (100.00%)

Ans 3 (Python)

解法一:

class Solution:
def minTotalDistance(self, grid: List[List[int]]) -> int:
def is_valid(x, y):
return 0 <= x < s1 and 0 <= y < s2

def get_near(x, y):
res = []
for xx, yy in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]:
if is_valid(xx, yy):
res.append((xx, yy))
return res

if not grid or not grid[0]:
return 0

s1, s2 = len(grid), len(grid[0])

people = []
for i1 in range(s1):
for i2 in range(s2):
if grid[i1][i2] == 1:
people.append((i1, i2))

dp = [[0] * s2 for _ in range(s1)]
for person in people:
visited = {person}
queue = collections.deque([person])
distance = 0
while queue:
distance += 1
for _ in range(len(queue)):
(i1, i2) = queue.popleft()
for (j1, j2) in get_near(i1, i2):
if (j1, j2) not in visited:
visited.add((j1, j2))
queue.append((j1, j2))
dp[j1][j2] += distance

return min(min(dp[i1]) for i1 in range(s1))

解法二:

class Solution:
def minTotalDistance(self, grid: List[List[int]]) -> int:

# 已知每个值的分布数时计算中位数
def get_median(lst):
vv = sum(lst)
if len(lst) % 2 == 0:
m1, m2 = vv // 2 - 1, vv // 2
v1, v2 = -1, -1
last = 0
for i in range(len(lst)):
last += lst[i]
if last > m1 and v1 == -1:
v1 = i
if last > m2:
v2 = i
break
return (v1 + v2) / 2
else:
m = vv // 2
last = 0
for i in range(len(lst)):
last += lst[i]
if last > m:
return i

# 最终的位置一定在横纵的中位数的位置上

s1, s2 = len(grid), len(grid[0])

# 统计行
# O(N)
count_row = []
for i1 in range(s1):
count_row.append(sum(grid[i1]))

# 统计列
# O(M)
count_col = []
for i2 in range(s2):
count_col.append(sum(grid[i1][i2] for i1 in range(s1)))

# O(N)
people_num = sum(count_row)

# 计算行的中位数
# O(N)
row_median = get_median(count_row)

# 计算列的中位数
# O(N)
col_median = get_median(count_col)

# print(count_row, row_median)
# print(count_col, col_median)

ans = 0

# 计算行的总值
# O(N)
for i1 in range(s1):
ans += abs(row_median - i1) * count_row[i1]

# 计算列的总值
for i2 in range(s2):
ans += abs(col_median - i2) * count_col[i2]

return int(ans)



举报

相关推荐

0 条评论