题目:原题链接(困难)
标签:数学、排序、广度优先搜索、图
解法 | 时间复杂度 | 空间复杂度 | 执行用时 |
Ans 1 (Python) | O ( N × M × P ) : 其中P为人数 | O ( N × M ) | 超出时间限制 |
Ans 2 (Python) | O ( N × M ) | O ( N × M ) | 60ms (100.00%) |
Ans 3 (Python) |
解法一:
class Solution:
def minTotalDistance(self, grid: List[List[int]]) -> int:
def is_valid(x, y):
return 0 <= x < s1 and 0 <= y < s2
def get_near(x, y):
res = []
for xx, yy in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]:
if is_valid(xx, yy):
res.append((xx, yy))
return res
if not grid or not grid[0]:
return 0
s1, s2 = len(grid), len(grid[0])
people = []
for i1 in range(s1):
for i2 in range(s2):
if grid[i1][i2] == 1:
people.append((i1, i2))
dp = [[0] * s2 for _ in range(s1)]
for person in people:
visited = {person}
queue = collections.deque([person])
distance = 0
while queue:
distance += 1
for _ in range(len(queue)):
(i1, i2) = queue.popleft()
for (j1, j2) in get_near(i1, i2):
if (j1, j2) not in visited:
visited.add((j1, j2))
queue.append((j1, j2))
dp[j1][j2] += distance
return min(min(dp[i1]) for i1 in range(s1))
解法二:
class Solution:
def minTotalDistance(self, grid: List[List[int]]) -> int:
# 已知每个值的分布数时计算中位数
def get_median(lst):
vv = sum(lst)
if len(lst) % 2 == 0:
m1, m2 = vv // 2 - 1, vv // 2
v1, v2 = -1, -1
last = 0
for i in range(len(lst)):
last += lst[i]
if last > m1 and v1 == -1:
v1 = i
if last > m2:
v2 = i
break
return (v1 + v2) / 2
else:
m = vv // 2
last = 0
for i in range(len(lst)):
last += lst[i]
if last > m:
return i
# 最终的位置一定在横纵的中位数的位置上
s1, s2 = len(grid), len(grid[0])
# 统计行
# O(N)
count_row = []
for i1 in range(s1):
count_row.append(sum(grid[i1]))
# 统计列
# O(M)
count_col = []
for i2 in range(s2):
count_col.append(sum(grid[i1][i2] for i1 in range(s1)))
# O(N)
people_num = sum(count_row)
# 计算行的中位数
# O(N)
row_median = get_median(count_row)
# 计算列的中位数
# O(N)
col_median = get_median(count_col)
# print(count_row, row_median)
# print(count_col, col_median)
ans = 0
# 计算行的总值
# O(N)
for i1 in range(s1):
ans += abs(row_median - i1) * count_row[i1]
# 计算列的总值
for i2 in range(s2):
ans += abs(col_median - i2) * count_col[i2]
return int(ans)