BM82 买卖股票的最好时机
知识点动态规划
描述
假设你有一个数组prices,长度为n,其中prices[i]是某只股票在第i天的价格,请根据这个价格数组,返回买卖股票能获得的最大收益
1. 你最多可以对该股票有两笔交易操作,一笔交易代表着一次买入与一次卖出,但是再次购买前必须卖出之前的股票
2. 如果不能获取收益,请返回0
3. 假设买入卖出均无手续费
数据范围:,股票的价格满足
要求: 空间复杂度
,时间复杂度
进阶:空间复杂度
,时间复杂度
示例1
输入:
[8,9,3,5,1,3]
复制返回值:
4
复制说明:
第三天(股票价格=3)买进,第四天(股票价格=5)卖出,收益为2
第五天(股票价格=1)买进,第六天(股票价格=3)卖出,收益为2
总收益为4。
示例2
输入:
[9,8,4,1]
复制返回值:
0
复制
示例3
输入:
[1,2,8,3,8]
复制返回值:
12
复制说明:
第一笔股票交易在第一天买进,第三天卖出;第二笔股票交易在第四天买进,第五天卖出;总收益为12。
因最多只可以同时持有一只股票,所以不能在第一天进行第一笔股票交易的买进操作,又在第二天进行第二笔股票交易的买进操作(此时第一笔股票交易还没卖出),最后两笔股票交易同时在第三天卖出,也即以上操作不满足题目要求。
题解
以下题解分析及代码均来自于牛客网官方题解。
思路:
这道题与BM80.买卖股票的最好时机(一)的区别在于最多可以买入卖出2次,那实际上相当于它的状态多了几个,对于每天有到此为止的最大收益和持股情况两个状态,持股情况有了5种变化,我们用:
表示到第i天为止没有买过股票的最大收益
表示到第i天为止买过一次股票还没有卖出的最大收益
表示到第i天为止买过一次也卖出过一次股票的最大收益
表示到第i天为止买过两次只卖出过一次股票的最大收益
表示到第i天为止买过两次同时也买出过两次股票的最大收益
于是使用动态规划,有了如下的状态转移
具体做法:
- step 1:(初始状态)与上述提到的题类似,第0天有买入了和没有买两种状态:
、
。
- step 2:状态转移:对于后续的每一天,如果当天还是状态0,则与前一天相同,没有区别;
- step 3:如果当天状态为1,可能是之前买过了或者当天才第一次买入,选取较大值:
;
- step 4:如果当天状态是2,那必须是在1的状态下(已经买入了一次)当天卖出第一次,或者早在之前就卖出只是还没买入第二次,选取较大值:
;
- step 5:如果当天状态是3,那必须是在2的状态下(已经卖出了第一次)当天买入了第二次,或者早在之前就买入了第二次,只是还没卖出,选取较大值:
;
- step 6:如果当天是状态4,那必须是在3的状态下(已经买入了第二次)当天再卖出第二次,或者早在之前就卖出了第二次,选取较大值:
。
- step 7:最后我们还要从0、第一次卖出、第二次卖出中选取最大值,因为有可能没有收益,也有可能只交易一次收益最大。
图示:
ps:因为状态转移的时候,辅助数组只使用到了第i列和第i-1列,因此可以不使用数组,直接用变量代替,优化空间复杂度。
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
//初始化dp为最小
vector<vector<int> > dp(n, vector<int>(5, -10000));
//第0天不持有状态
dp[0][0] = 0;
//第0天持有股票
dp[0][1] = -prices[0];
//状态转移
for(int i = 1; i < n; i++){
dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
//选取最大值,可以只操作一次
return max(dp[n - 1][2], max(0, dp[n - 1][4]));
}
};