0
点赞
收藏
分享

微信扫一扫

C++--剪绳子


剪绳子

题目

给你一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

要求
输入:8
输出:18

代码

#include<iostream>
#include<math.h>
using namespace std;
int max(int n)
{
if(n==2)
return 1;
if(n==3)
return 2;
int x=n%3;
int y=n/3;
if(x==0)
return pow(3,y);
else if(x==1)
return 2*2*pow(3,y-1);
else
return 2*pow(3,y);

}

int main()
{

cout<<max(8)<<endl;

return 0;
}

大佬的源代码及解释

#include <iostream>
#include <cmath>

using namespace std;

/**
* 题目分析:
* 先举几个例子,可以看出规律来。
* 4 : 2*2
* 5 : 2*3
* 6 : 3*3
* 7 : 2*2*3 或者4*3
* 8 : 2*3*3
* 9 : 3*3*3
* 10:2*2*3*3 或者4*3*3
* 11:2*3*3*3
* 12:3*3*3*3
* 13:2*2*3*3*3 或者4*3*3*3
*
* 下面是分析:
* 首先判断k[0]到k[m]可能有哪些数字,实际上只可能是2或者3。
* 当然也可能有4,但是4=2*2,我们就简单些不考虑了。
* 5<2*3,6<3*3,比6更大的数字我们就更不用考虑了,肯定要继续分。
* 其次看2和3的数量,2的数量肯定小于3个,为什么呢?因为2*2*2<3*3,那么题目就简单了。
* 直接用n除以3,根据得到的余数判断是一个2还是两个2还是没有2就行了。
* 由于题目规定m>1,所以2只能是1*1,3只能是2*1,这两个特殊情况直接返回就行了。
*
* 乘方运算的复杂度为:O(log n),用动态规划来做会耗时比较多。
*/
long long n_max_3(long long n) {
if (n == 2) {
return 1;
}
if (n == 3) {
return 2;
}
long long x = n % 3;
long long y = n / 3;
if (x == 0) {
return pow(3, y);
} else if (x == 1) {
return 2 * 2 * (long long) pow(3, y - 1);
} else {
return 2 * (long long) pow(3, y);
}
}

//给你一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
//
//输入描述:
//输入一个数n,意义见题面。(2 <= n <= 100)
//
//
//输出描述:
//输出答案。
//示例1
//输入
//8
//输出
//18
int main() {
long long n = 0;
cin >> n;
cout << n_max_3(n) << endl;
return 0;
}


举报

相关推荐

0 条评论