function
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 34 Accepted Submission(s): 7
Problem Description
f(x),which is defined on the natural numbers set
N,satisfies the following eqaution
N2−3N+2=∑d|Nf(d)
calulate
∑Ni=1f(i)
mod 109+7.
Input
the first line contains a positive integer T,means the number of the test cases.
next T lines there is a number N
T≤500,N≤109
only
5 test cases has
N>106.
Output
Tlines,each line contains a number,means the answer to the i-th test case.
Sample Input
1 3
Sample Output
2
$1^2-3*1+2=f(1)=0$
$2^2-3*2+2=f(2)+f(1)=0->f(2)=0$
$3^2-3*3+2=f(3)+f(1)=2->f(3)=2$
$f(1)+f(2)+f(3)=2$
//WA的代码:
可能是思路错了
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define ll long long
using namespace std;
const int M=1000000007;
int main()
{
int t;
ll sum,num;
ll n,n1,n2;
scanf("%d",&t);
while(t--)
{
sum=0;
scanf("%lld",&n);
n1=(ll)(n*(n-1))%M;
sum=(ll)(n1*(n-2))%M;
sum=(ll)sum/3;
printf("%lld\n",sum);
}
return 0;
}