1.简述:
描述
我们可以用 2*1 的小矩形横着或者竖着去覆盖更大的矩形。请问用 n 个 2*1 的小矩形无重叠地覆盖一个 2*n 的大矩形,从同一个方向看总共有多少种不同的方法?
数据范围:
进阶:空间复杂度 ,时间复杂度
注意:约定 n == 0 时,输出 0
比如n=3时,2*3的矩形块有3种不同的覆盖方法(从同一个方向看):
输入描述:
2*1的小矩形的总个数n
返回值描述:
覆盖一个2*n的大矩形总共有多少种不同的方法(从同一个方向看)
示例1
输入:
0
返回值:
0
示例2
输入:
1
返回值:
1
示例3
输入:
4
返回值:
5
2.代码实现:
public class Solution {
public int rectCover(int target) {
//约定 n == 0 时,输出 0, 1时也只有一种
if(target <= 2)
return target;
//f(n-1)+f(n-2)
return rectCover(target - 1) + rectCover(target - 2);
}
}