Description
A sequence X_1, X_2, …, X_n is fibonacci-like if:
- n >= 3
- X_i + X_{i+1} = X_{i+2} for all i + 2 <= n
Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements. For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)
Example 1:
Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Example 2:
Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].
Note:
- 3 <= A.length <= 1000
- 1 <= A[0] < A[1] < … < A[A.length - 1] <= 10^9
(The time limit has been reduced by 50% for submissions in Java, C, and C++.)
分析
题目的意思是:题目的意思是给你一个数组,找出最长的fibonacci数列,我开始用到暴力求解的方法,写了两个大循环,后面看答案还有动态规划的解法,我这里欣赏一下,顺便分享出来,方便大家一同进步。大致思路是首先建立一个关于A的值和索引的字典,然后按照求最长递增子序列的方法遍历,如果(i,j),(j,k)相连,则
longest[j, k] = longest[i, j] + 1
细节我也不是很懂,经常看应该就懂了
代码
class Solution:
def lenLongestFibSubseq(self, A: List[int]) -> int:
index_dict={}
for index,item in enumerate(A):
index_dict[item]=index
longest=collections.defaultdict(lambda:2)
res=0
for index,value in enumerate(A):
for j in range(index):
i=index_dict.get(value-A[j],None)
if(i is not None and i<j):
longest[j,index]=longest[i,j]+1
res=max(longest[j,index],res)
if(res<3):
res=0
return res
参考文献
[LeetCode] Approach 2: Dynamic Programming