#include "Triangle.hpp"
#include "rasterizer.hpp"
#include <eigen3/Eigen/Eigen>
#include <iostream>
#include <opencv2/opencv.hpp>
constexpr double MY_PI = 3.1415926;
Eigen::Matrix4f get_view_matrix(Eigen::Vector3f eye_pos)
{
Eigen::Matrix4f view = Eigen::Matrix4f::Identity();
Eigen::Matrix4f translate;
translate << 1, 0, 0, -eye_pos[0], 0, 1, 0, -eye_pos[1], 0, 0, 1,
-eye_pos[2], 0, 0, 0, 1;
view = translate * view;
return view;
}
Eigen::Matrix4f get_model_matrix(float rotation_angle)
{
Eigen::Matrix4f model = Eigen::Matrix4f::Identity();
// TODO: Implement this function
// Create the model matrix for rotating the triangle around the Z axis.
// Then return it.
rotation_angle = rotation_angle / 180 * MY_PI;
Eigen::Matrix4f r;
r << cos(rotation_angle), -sin(rotation_angle), 0.0,0.0,
sin(rotation_angle), cos(rotation_angle), 0.0, 0.0,
0.0, 0.0, 1.0,0.0,
0.0, 0.0, 1.0,1.0;
model = r * model;
return model;
}
Eigen::Matrix4f get_rotation(Vector3f axis, float angle){
Eigen::Matrix4f I = Eigen::Matrix4f::Identity();
Eigen::Matrix4f R_n_alpha;
Vector4f n(axis[0],axis[1],axis[2],0);
Eigen::Matrix4f cross_prod;
cross_prod << 0, -n[2], n[1],
n[2], 0, -n[0],
-n[1],n[0],0;
R_n_alpha = cos(angle)*I + (1-cos(angle))*n*n.transpose()+sin(angle)*cross_prod;
return R_n_alpha;
}
Eigen::Matrix4f get_projection_matrix(float eye_fov, float aspect_ratio,
float zNear, float zFar)
{
// Students will implement this function
Eigen::Matrix4f projection = Eigen::Matrix4f::Identity();
// TODO: Implement this function
// Create the projection matrix for the given parameters.
// Then return it.
float n = zNear;
float f = zFar;
float t = tan(eye_fov/2) * abs(n);
float b = -t;
float r = aspect_ratio * t;
float l = -r;
Eigen::Matrix4f M_ortho_1,M_ortho_2,M_ortho;
M_ortho_2 << 2/(r-l), 0.0, 0.0, 0.0,
0.0, 2/(t-b), 0.0, 0.0,
0.0, 0.0, 2/(n-f), 0.0,
0.0, 0.0, 0.0, 1.0;
M_ortho_1 << 1.0, 0.0, 0.0, -(r+l)/2,
0.0, 1.0, 0.0, -(t+b)/2,
0.0, 0.0, 1.0, -(n+f)/2,
0.0, 0.0, 0.0, 1.0;
M_ortho = M_ortho_2 * M_ortho_1;
Eigen::Matrix4f M_persp_ortho;
M_persp_ortho << n, 0.0, 0.0, 0.0,
0.0, n, 0.0, 0.0,
0.0, 0.0, n+f, -n*f,
0.0, 0.0, 1.0, 0.0;
M_ortho = M_ortho_2 * M_ortho_1;
projection = M_ortho * M_persp_ortho * projection;
return projection;
}
int main(int argc, const char** argv)
{
float angle = 0;
bool command_line = false;
std::string filename = "output.png";
if (argc >= 3) {
command_line = true;
angle = std::stof(argv[2]); // -r by default
if (argc == 4) {
filename = std::string(argv[3]);
}
}
rst::rasterizer r(700, 700);
Eigen::Vector3f eye_pos = {0, 0, 5};
std::vector<Eigen::Vector3f> pos{{2, 0, -2}, {0, 2, -2}, {-2, 0, -2}};
std::vector<Eigen::Vector3i> ind{{0, 1, 2}};
auto pos_id = r.load_positions(pos);
auto ind_id = r.load_indices(ind);
int key = 0;
int frame_count = 0;
if (command_line) {
r.clear(rst::Buffers::Color | rst::Buffers::Depth);
r.set_model(get_model_matrix(angle));
r.set_view(get_view_matrix(eye_pos));
r.set_projection(get_projection_matrix(45, 1, 0.1, 50));
r.draw(pos_id, ind_id, rst::Primitive::Triangle);
cv::Mat image(700, 700, CV_32FC3, r.frame_buffer().data());
image.convertTo(image, CV_8UC3, 1.0f);
cv::imwrite(filename, image);
return 0;
}
while (key != 27) {
r.clear(rst::Buffers::Color | rst::Buffers::Depth);
r.set_model(get_model_matrix(angle));
r.set_view(get_view_matrix(eye_pos));
r.set_projection(get_projection_matrix(45, 1, 0.1, 50));
r.draw(pos_id, ind_id, rst::Primitive::Triangle);
cv::Mat image(700, 700, CV_32FC3, r.frame_buffer().data());
image.convertTo(image, CV_8UC3, 1.0f);
cv::imshow("image", image);
key = cv::waitKey(10);
std::cout << "frame count: " << frame_count++ << '\n';
if (key == 'a') {
angle += 10;
}
else if (key == 'd') {
angle -= 10;
}
}
return 0;
}