本系列文章为浙江大学陈越、何钦铭数据结构学习笔记,前面的系列文章链接如下:
数据结构基础:P1-基本概念
数据结构基础:P2.1-线性结构—>线性表
数据结构基础:P2.2-线性结构—>堆栈
数据结构基础:P2.3-线性结构—>队列
数据结构基础:P2.4-线性结构—>应用实例:多项式加法运算
数据结构基础:P2.5-线性结构—>应用实例:多项式乘法与加法运算-C实现
数据结构基础:P3.1-树(一)—>树与树的表示
数据结构基础:P3.2-树(一)—>二叉树及存储结构
数据结构基础:P3.3-树(一)—>二叉树的遍历
数据结构基础:P3.4-树(一)—>小白专场:树的同构-C语言实现
数据结构基础:P4.1-树(二)—>二叉搜索树
数据结构基础:P4.2-树(二)—>二叉平衡树
数据结构基础:P4.3-树(二)—>小白专场:是否同一棵二叉搜索树-C实现
数据结构基础:P4.4-树(二)—>线性结构之习题选讲:逆转链表
数据结构基础:P5.1-树(三)—>堆
数据结构基础:P5.2-树(三)—>哈夫曼树与哈夫曼编码
数据结构基础:P5.3-树(三)—>集合及运算
数据结构基础:P5.4-树(三)—>入门专场:堆中的路径
数据结构基础:P5.5-树(三)—>入门专场:File Transfer
数据结构基础:P6.1-图(一)—>什么是图
数据结构基础:P6.2-图(一)—>图的遍历
数据结构基础:P6.3-图(一)—>应用实例:拯救007
数据结构基础:P6.4-图(一)—>应用实例:六度空间
数据结构基础:P6.5-图(一)—>小白专场:如何建立图-C语言实现
数据结构基础:P7.1-图(二)—>树之习题选讲:Tree Traversals Again
数据结构基础:P7.2-图(二)—>树之习题选讲:Complete Binary Search Tree
数据结构基础:P7.3-图(二)—>树之习题选讲:Huffman Codes
数据结构基础:P7.4-图(二)—>最短路径问题
数据结构基础:P7.5-图(二)—>哈利·波特的考试
数据结构基础:P8.1-图(三)—>最小生成树问题
数据结构基础:P8.2-图(三)—>拓扑排序
数据结构基础:P8.3-图(三)—>图之习题选讲-旅游规划
数据结构基础:P9.1-排序(一)—>简单排序(冒泡、插入)
数据结构基础:P9.2-排序(一)—>希尔排序
数据结构基础:P9.3-排序(一)—>堆排序
数据结构基础:P9.4-排序(一)—>归并排序
数据结构基础:P10.1-排序(二)—>快速排序
数据结构基础:P10.2-排序(二)—>表排序
文章目录
前言
前面我们讲了那么多排序算法,它们有一个共同的特点:他们仅仅是基于比较大小来决定元素位置的
。那么有定理结论告诉我们,仅仅基于比较进行的排序算法它们的最坏时间复杂度下界是
O
(
N
l
o
g
N
)
\rm{O(NlogN)}
O(NlogN)。也就是说,我们总能制造出一个最坏情况让它用最快的算法跑,它也只能跑到NlogN。那么还有没有可能更快呢?当然有可能!就是我们除了比较之外还干点什么别的事,这就是基数排序
一、桶排序
在介绍基数排序之前,我们先来看一下桶排序,事实上基数排序是桶排序的升级版。
例子
算法对应伪码如下:
void Bucket_Sort(ElementType A[], int N)
{
count[]初始化;
while (读入1个学生成绩grade)
将该生插入count[grade]链表;
for ( i=0; i<M; i++ ) {
if ( count[ ( count[i] )
输出整个count[i]链表;
}
}
时间复杂度
二、基数排序
对于上面那个例子,我们有一个问题:如果M要比N要大很多,该怎么办呢?
例子
时间复杂度:
三、多关键字的排序
基数排序不仅仅是用于处理整数的基数排序,它还可以被用于处理有多关键字的排序。
例子
使用次位优先
C语言代码:基数排序-次位优先
/* 基数排序 - 次位优先 */
/* 假设元素最多有MaxDigit个关键字,基数全是同样的Radix */
#define MaxDigit 4
#define Radix 10
/* 桶元素结点 */
typedef struct Node *PtrToNode;
struct Node {
int key;
PtrToNode next;
};
/* 桶头结点 */
struct HeadNode {
PtrToNode head, tail;
};
typedef struct HeadNode Bucket[Radix];
int GetDigit ( int X, int D )
{ /* 默认次位D=1, 主位D<=MaxDigit */
int d, i;
for (i=1; i<=D; i++) {
d = X % Radix;
X /= Radix;
}
return d;
}
void LSDRadixSort( ElementType A[], int N )
{ /* 基数排序 - 次位优先 */
int D, Di, i;
Bucket B;
PtrToNode tmp, p, List = NULL;
for (i=0; i<Radix; i++) /* 初始化每个桶为空链表 */
B[i].head = B[i].tail = NULL;
for (i=0; i<N; i++) { /* 将原始序列逆序存入初始链表List */
tmp = (PtrToNode)malloc(sizeof(struct Node));
tmp->key = A[i];
tmp->next = List;
List = tmp;
}
/* 下面开始排序 */
for (D=1; D<=MaxDigit; D++) { /* 对数据的每一位循环处理 */
/* 下面是分配的过程 */
p = List;
while (p) {
Di = GetDigit(p->key, D); /* 获得当前元素的当前位数字 */
/* 从List中摘除 */
tmp = p; p = p->next;
/* 插入B[Di]号桶尾 */
tmp->next = NULL;
if (B[Di].head == NULL)
B[Di].head = B[Di].tail = tmp;
else {
B[Di].tail->next = tmp;
B[Di].tail = tmp;
}
}
/* 下面是收集的过程 */
List = NULL;
for (Di=Radix-1; Di>=0; Di--) { /* 将每个桶的元素顺序收集入List */
if (B[Di].head) { /* 如果桶不为空 */
/* 整桶插入List表头 */
B[Di].tail->next = List;
List = B[Di].head;
B[Di].head = B[Di].tail = NULL; /* 清空桶 */
}
}
}
/* 将List倒入A[]并释放空间 */
for (i=0; i<N; i++) {
tmp = List;
List = List->next;
A[i] = tmp->key;
free(tmp);
}
}
C语言代码:基数排序-主位优先
* 基数排序 - 主位优先 */
/* 假设元素最多有MaxDigit个关键字,基数全是同样的Radix */
#define MaxDigit 4
#define Radix 10
/* 桶元素结点 */
typedef struct Node *PtrToNode;
struct Node{
int key;
PtrToNode next;
};
/* 桶头结点 */
struct HeadNode {
PtrToNode head, tail;
};
typedef struct HeadNode Bucket[Radix];
int GetDigit ( int X, int D )
{ /* 默认次位D=1, 主位D<=MaxDigit */
int d, i;
for (i=1; i<=D; i++) {
d = X%Radix;
X /= Radix;
}
return d;
}
void MSD( ElementType A[], int L, int R, int D )
{ /* 核心递归函数: 对A[L]...A[R]的第D位数进行排序 */
int Di, i, j;
Bucket B;
PtrToNode tmp, p, List = NULL;
if (D==0) return; /* 递归终止条件 */
for (i=0; i<Radix; i++) /* 初始化每个桶为空链表 */
B[i].head = B[i].tail = NULL;
for (i=L; i<=R; i++) { /* 将原始序列逆序存入初始链表List */
tmp = (PtrToNode)malloc(sizeof(struct Node));
tmp->key = A[i];
tmp->next = List;
List = tmp;
}
/* 下面是分配的过程 */
p = List;
while (p) {
Di = GetDigit(p->key, D); /* 获得当前元素的当前位数字 */
/* 从List中摘除 */
tmp = p; p = p->next;
/* 插入B[Di]号桶 */
if (B[Di].head == NULL) B[Di].tail = tmp;
tmp->next = B[Di].head;
B[Di].head = tmp;
}
/* 下面是收集的过程 */
i = j = L; /* i, j记录当前要处理的A[]的左右端下标 */
for (Di=0; Di<Radix; Di++) { /* 对于每个桶 */
if (B[Di].head) { /* 将非空的桶整桶倒入A[], 递归排序 */
p = B[Di].head;
while (p) {
tmp = p;
p = p->next;
A[j++] = tmp->key;
free(tmp);
}
/* 递归对该桶数据排序, 位数减1 */
MSD(A, i, j-1, D-1);
i = j; /* 为下一个桶对应的A[]左端 */
}
}
}
void MSDRadixSort( ElementType A[], int N )
{ /* 统一接口 */
MSD(A, 0, N-1, MaxDigit);
}
小测验
1、基数排序是稳定的算法 (正确)