0
点赞
收藏
分享

微信扫一扫

宾夕法尼亚大学2020最新-《图神经网络》


宾夕法尼亚大学2020最新-《图神经网络》_自然语言处理

课程描述

    图神经网络(GNN)是图结构上支进行信息处理网络体系结构。它们已被开发并作为卷积神经网络(CNN),我们在本课程中主要介绍,该卷积神经网络用于处理时空信号。根据学生对神经网络(NN)和深度学习的了解程度,这句话听起来可能很奇怪。CNN不只是NN的特殊情况吗?GNN并非如此吗?从严格意义上讲,它们是,但是本课程的关注点是涉及高维信号的大规模问题。在这些场景中,NN无法缩放。CNN为时空信号提供可扩展的学习。GNNS支持对图上支持的信号进行可扩展的学习和聚合。

 

    课程资料:https://mp.weixin.qq.com/s?__biz=MzIxNDgzNDg3NQ==&mid=2247489458&idx=1&sn=7b95bbc9134c29f15b4ddb71abba4b58&chksm=97a0dc66a0d7557078c9fd9d467e392ce58215561e2f4cff8b9ff52c083940bdc51d7d8f10af&token=1222766599&lang=zh_CN#rd

 

    在本课程中,我们将介绍图卷积滤波器和图滤波器组,然后继续研究单特征和多特征GNN。我们还将介绍相关的架构,例如循环GNN。将特别强调研究置换的等方差和图形神经网络变形的稳定性。这些特性提供了一种可以凭经验观察到的有关GNN良好性能的解释方法。我们还将研究大量节点中的GNN,以解释GNN在具有不同节点数的网络之间的可传递性。

 

课程首页

https://gnn.seas.upenn.edu/


课程主讲人

宾夕法尼亚大学2020最新-《图神经网络》_深度学习_02


课程大纲

宾夕法尼亚大学2020最新-《图神经网络》_神经网络_03

 

课程视频截图

宾夕法尼亚大学2020最新-《图神经网络》_神经网络_04

宾夕法尼亚大学2020最新-《图神经网络》_神经网络_05

宾夕法尼亚大学2020最新-《图神经网络》_神经网络_06

宾夕法尼亚大学2020最新-《图神经网络》_深度学习_07

    课程资料:https://mp.weixin.qq.com/s?__biz=MzIxNDgzNDg3NQ==&mid=2247489458&idx=1&sn=7b95bbc9134c29f15b4ddb71abba4b58&chksm=97a0dc66a0d7557078c9fd9d467e392ce58215561e2f4cff8b9ff52c083940bdc51d7d8f10af&token=1222766599&lang=zh_CN#rd

 


举报

相关推荐

图神经网络

0 条评论