题目:
给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
示例 1:
输入:n = 3
输出:5
示例 2:
输入:n = 1
输出:1
提示:
1 <= n <= 19
答案:
class Solution {
public int numTrees(int n) {
/**
动态规划
假设n个节点存在二叉排序树的个数是G(n),令f(i)为以i为根的二叉搜索树的个数
即有:G(n) = f(1) + f(2) + f(3) + f(4) + ... + f(n)
n为根节点,当i为根节点时,其左子树节点个数为[1,2,3,...,i-1],右子树节点个数为[i+1,i+2,...n],所以当i为根节点时,其左子树节点个数为i-1个,右子树节点为n-i,即f(i) = G(i-1)*G(n-i),
上面两式可得:G(n) = G(0)*G(n-1)+G(1)*(n-2)+...+G(n-1)*G(0)
*/
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i < n + 1; i++){
for(int j = 1; j < i + 1; j++){
dp[i] += dp[j-1] * dp[i-j];
}
}
return dp[n];
}
}