0
点赞
收藏
分享

微信扫一扫

LeetCode_96_不同的二叉搜索树


题目描述:

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

什么是卡特兰数:​​卡特兰数​​​ 算法思想:设G(n)表示n个节点的二叉搜索树的个数,f(i)表示以i为根节点的二叉搜索树的个数(i=1,2,3…n)
G(n)=f(1)+f(2)+f(3)++++++f(n)
由二叉搜索树的性质可知:
f(i)=G(i-1)*G(n-i)
则有G(n)=G(0)*G(n-1)+G(1)*G(n-1)+++++++G(n-1)*G(0)
动态规划设置dp[n+1]数组,dp[i]表示树节点个数是i个时,二叉搜索树的个数

class Solution {
public:
int numTrees(int n) {
int dp[n+1];//dp用于存放节点数为i的二叉搜索树的棵数
memset(dp,0,sizeof(dp));
dp[0] = 1;
for (int i = 1; i <= n; ++i) {//i表示二叉搜索树节点总数
for (int k = 1; k <= i; ++k) {//k表示充当根节点的节点序号
dp[i] += dp[k - 1] * dp[i - k];
}
}
return dp[n];
}
};

LeetCode_96_不同的二叉搜索树_算法思想


举报

相关推荐

0 条评论