0
点赞
收藏
分享

微信扫一扫

POJ 2891 Strange Way to Express Integers 中国剩余定理 不互质


Strange Way to Express Integers

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2

8 7

11 9

Sample Output

31

Hint

All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

Source

​​POJ Monthly--2006.07.30​​, Static

Time Limit: 1000MS

 

Memory Limit: 131072K

Total Submissions: 19891

 

Accepted: 6710

算法分析:

水题一枚,注意是不互质的中国剩余定理。

具体解释​​(点这里)​​

代码实现:

#include<iostream>
#include<string>
#include<cstdio>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b) { return b == 0 ? a : gcd(b, a % b); }
ll e_gcd (ll a, ll b, ll& x, ll& y)
{
if (b == 0)
{
x = 1, y = 0;
return a;
}
ll ans = e_gcd (b, a % b, y, x);
y -= a / b * x;
return ans;
}
ll CRT(int a[], int m[], int n)
{
ll Mi = m[1], ans = a[1];
for (int i = 2; i <= n; ++i)
{
ll mi = m[i], ai = a[i];
ll x, y;
ll gcd = e_gcd (Mi, mi, x, y);
ll c = ai - ans;
if (c % gcd != 0) return -1;
ll M = mi / gcd;
ans += Mi * ( ( (c /gcd*x) % M + M) % M);
Mi *= M;
}
if (ans == 0) //当余数都为0
{
ans = 1;
for (int i = 1; i <= n; ++i)
{
ans = ans*m[i]/gcd(ans,(ll)m[i]);
}
}
return ans;
}
int a[1005],m[1005];
int main()
{
int n;

while(scanf("%d",&n)!=EOF)
{

for(int i=1;i<=n;i++)
{
scanf("%d%d",&m[i],&a[i]);
}
cout<<CRT(a,m,n)<<endl;
}
}

 

举报

相关推荐

0 条评论