0
点赞
收藏
分享

微信扫一扫

95% 的算法都是基于这 6 种算法思想

闲嫌咸贤 2022-03-22 阅读 80
算法

算法思想是解决问题的核心,万丈高楼起于平地,在算法中也是如此,95% 的算法都是基于这 6 种算法思想,结下了介绍一下这 6 种算法思想,帮助你理解及解决各种算法问题。

请添加图片描述

目录

1. 递归算法

1.1 算法策略

递归算法是一种直接或者间接调用自身函数或者方法的算法。
递归算法的实质是把问题分解成规模缩小的同类问题的子问题,然后递归调用方法来表示问题的解。递归算法对解决一大类问题很有效,它可以使算法简洁和易于理解。

优缺点:

  • 优点:实现简单易上手
  • 缺点:递归算法对常用的算法如普通循环等,运行效率较低;并且在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储,递归太深,容易发生栈溢出

1.2 适用场景

递归算法一般用于解决三类问题:

  • 数据的定义是按递归定义的。(斐波那契数列)
  • 问题解法按递归算法实现。(回溯)
  • 数据的结构形式是按递归定义的。(树的遍历,图的搜索)

递归的解题策略:

  • 第一步:明确你这个函数的输入输出,先不管函数里面的代码什么,而是要先明白,你这个函数的输入是什么,输出为何什么,功能是什么,要完成什么样的一件事。
  • 第二步:寻找递归结束条件,我们需要找出什么时候递归结束,之后直接把结果返回
  • 第三步:明确递归关系式,怎么通过各种递归调用来组合解决当前问题

1.3 使用递归算法求解的一些经典问题

  • 斐波那契数列
  • 汉诺塔问题
  • 树的遍历及相关操作

2. 分治算法

2.1 算法策略

在计算机科学中,分治算法是一个很重要的算法,快速排序、归并排序等都是基于分治策略进行实现的,所以,建议理解掌握它。

分治,顾名思义,就是 分而治之 ,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为阿子问题解的合并。

2.2 适用场景

当出现满足以下条件的问题,可以尝试只用分治策略进行求解:

  • 原始问题可以分成多个相似的子问题
  • 子问题可以很简单的求解
  • 原始问题的解是子问题解的合并
  • 各个子问题是相互独立的,不包含相同的子问题

分治的解题策略:

  • 第一步:分解,将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
  • 第二步:解决,解决各个子问题
  • 第三步:合并,将各个子问题的解合并为原问题的解

2.3 使用分治法求解的一些经典问题

  • 二分查找
  • 归并排序
  • 快速排序
  • 汉诺塔问题
  • React 时间分片

二分查找

也称折半查找算法,它是一种简单易懂的快速查找算法。例如我随机写0-100之间的一个数字,让你猜我写的是什么?你每猜一次,我就会告诉你猜的大了还是小了,直到猜中为止。

第一步:分解

每次猜拳都把上一次的结果分出大的一组和小的一组,两组相互独立

  • 选择数组中的中间数

第二步:解决子问题

查找数与中间数对比

  • 比中间数低,则去中间数左边的子数组中寻找;
  • 比中间数高,则去中间数右边的子数组中寻找;
  • 相等则返回查找成功

第三步:合并

最后,二分法只能应用于数组有序的情况,如果数组无序,二分查找就不能起作用了

3. 贪心算法

3.1 算法策略

贪心算法,故名思义,总是做出当前的最优选择,即期望通过局部的最优选择获得整体的最优选择。

某种意义上说,贪心算法是很贪婪、很目光短浅的,它不从整体考虑,仅仅只关注当前的最大利益,所以说它做出的选择仅仅是某种意义上的局部最优,但是贪心算法在很多问题上还是能够拿到最优解或较优解,所以它的存在还是有意义的。

3.2 适用场景

在日常生活中,我们使用到贪心算法的时候还是挺多的,例如:

从100章面值不等的钞票中,抽出 10 张,怎样才能获得最多的价值?

我们只需要每次都选择剩下的钞票中最大的面值,最后一定拿到的就是最优解,这就是使用的贪心算法,并且最后得到了整体最优解。

但是,我们任然需要明确的是,期望通过局部的最优选择获得整体的最优选择,仅仅是期望而已,也可能最终得到的结果并不一定不能是整体最优解。

例如:求取A到G最短路径:
在这里插入图片描述
根据贪心算法总是选择当前最优选择,所以它首先选择的路径是 AB,然后 BE、EG,所得到的路径总长为 1 + 5 + 4 = 10,然而这并不是最短路径,最短路径为 A->C->G : 2 + 2 = 4,所以说,贪心算法得到得并不一定是最优解。

那么一般在什么时候可以尝试选择使用贪心算法喃?

当满足一下条件时,可以使用:

  • 原问题复杂度过高
  • 求全局最优解的数学模型难以建立或计算量过大
  • 没有太大必要一定要求出全局最优解,“比较优”就可以

如果使用贪心算法求最优解,可以按照以下 步骤求解 :

  • 首先,我们需要明确什么是最优解(期望)
  • 然后,把问题分成多个步骤,每一步都需要满足:
    • 可行性:每一步都满足问题的约束
    • 局部最优:每一步都做出一个局部最优的选择
    • 不可取消:选择一旦做出,在后面遇到任何情况都不可取消
  • 最后,叠加所有步骤的最优解,就是全局最优解

3.3 经典案例:活动选择问题

  • 最小生成树算法
  • 单源最短路径的 Dijkstra 算法
  • Huffman 压缩编码
  • 背包问题
  • 活动选择问题等

其中活动选择问题是最简单的,这里详细介绍这个。

活动选择问题是《算法导论》上的例子,也是一个非常经典的问题。有 n 个活动(a1,a2,…,an)需要使用同一个资源(例如教室),资源在某个时刻只能供一个活动使用。每个活动 ai 都有一个开始时间 si 和结束时间 fi 。一旦被选择后,活动 ai 就占据半开时间区间 [si,fi) 。如果 [si,fi) 和 [sj,fj) 互不重叠,ai 和 aj 两个活动就可以被安排在这一天。

该问题就是要安排这些活动,使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

在这里插入图片描述
共有 7 个活动,它们在 18 个小时内需要占用的时间如上图,如何选择活动,能让这间教室利用率最高喃(能够举行更多的活动)?

贪心算法对这种问题的解决很简单的,它开始时刻开始选择,每次选择开始时间与与已选择活动不冲突的,结束时间又比较靠前的活动,这样会让剩下的时间区间更长。
在这里插入图片描述

  • 首先 a1 活动的结束时间最早,选择 a1 活动
  • a1 结束后,a2 有时间冲突,不可选择,a3、a4 都可选择,但 a4 结束时间最早,选择 a4
  • 依次选择时间没有冲突的,又结束时间最早的活动
    最终选择活动为 a1,a4,a5,a7。为最优解。

4. 回溯算法

4.1 算法策略

回溯算法是一种搜索法,试探法,它会在每一步做出选择,一旦发现这个选择无法得到期望结果,就回溯回去,重新做出选择。深度优先搜索利用的就是回溯算法思想。

4.2 适用场景

回溯算法很简单,它就是不断的尝试,直到拿到解。它的这种算法思想,使它通常用于解决广度的搜索问题,即从一组可能的解中,选择一个满足要求的解。

4.3 使用回溯算法的经典案例

  • 深度优先搜索
  • 0-1背包问题
  • 则表达式匹配
  • 八皇后
  • 数独
  • 全排列

等等,深度优先搜索我们在图那一章已经介绍过,这里以正则表达式匹配为例,介绍一下

5. 动态规划

动态规划经典公式

5.1 算法策略

动态规划也是将复杂问题分解成小问题求解的策略,与分治算法不同的是,分治算法要求各子问题是相互独立的,而动态规划各子问题是相互关联的。

所以,动态规划适用于子问题重叠的情况,即不同的子问题具有公共的子子问题,在这种情况下,分治策略会做出很多不必要的工作,它会反复求解那些公共子子问题,而动态规划会对每个子子问题求解一次,然后保存在表格中,如果遇到一致的问题,从表格中获取既可,所以它无需求解每一个子子问题,避免了大量的不必要操作。

5.2 适用场景

动态规划适用于求解最优解问题,比如,从面额不定的100个硬币中任意选取多个凑成10元,求怎样选取硬币才可以使最后选取的硬币数最少又刚好凑够了10元。这就是一个典型的动态规划问题。它可以分成一个个子问题(每次选取硬币),每个子问题又有公共的子子问题(选取硬币),子问题之间相互关联(已选取的硬币总金额不能超过10元),边界条件就是最终选取的硬币总金额为 10 元。

针对上例,也许你也可以说,我们可以使用回溯算法,不断的去试探,但回溯算法是使用与求解广度的解(满足要求的解),如果是用回溯算法,我们需要尝试去找所有满足条件的解,然后找到最优解,时间复杂度为 O(2n) ,这性能是相当差的。大多数适用于动态规划的问题,都可以使用回溯算法,只是使用回溯算法的时间复杂度比较高而已。

最后,总结一下,我们使用动态规划求解问题时,需要遵循以下几个重要步骤:

  • 定义子问题
  • 实现需要反复执行解决的子子问题部分
  • 识别并求解出边界条件

5.3 使用动态规划求解的一些经典问题

  • 爬楼梯问题:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
  • 背包问题:给出一些资源(有总量及价值),给一个背包(有总容量),往背包里装资源,目标是在背包不超过总容量的情况下,装入更多的价值
  • 硬币找零:给出面额不定的一定数量的零钱,以及需要找零的钱数,找出有多少种找零方案
  • 图的全源最短路径:一个图中包含 u、v 顶点,找出从顶点 u 到顶点 v 的最短路径
  • 最长公共子序列:找出一组序列的最长公共子序列(可由另一序列删除元素但不改变剩下元素的顺序实现)

这里以最长公共子序列为例。

爬楼梯问题

这里以动态规划经典问题爬楼梯问题为例,介绍求解动态规划问题的步骤。

第一步:定义子问题

如果用 dp[n] 表示第 n 级台阶的方案数,并且由题目知:最后一步可能迈 2 个台阶,也可迈 1 个台阶,即第 n 级台阶的方案数等于第 n-1 级台阶的方案数加上第 n-2 级台阶的方案数

第二步:实现需要反复执行解决的子子问题部分

dp[n] = dp[n−1] + dp[n−2]

第三步:识别并求解出边界条件

// 第 0 级 1 种方案 
dp[0]=1 
// 第 1 级也是 1 种方案 
dp[1]=1

最后一步:把尾码翻译成代码,处理一些边界情况

    for(int i = 2; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2]
    }
    return dp[n]
}

复杂度分析:

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

6. 枚举算法

6.1 算法策略

枚举算法的思想是:将问题的所有可能的答案一一列举,然后根据条件判断此答案是否合适,保留合适的,丢弃不合适的。

6.2 解题思路

确定枚举对象、枚举范围和判定条件。
逐一列举可能的解,验证每个解是否是问题的解。

举报

相关推荐

0 条评论